首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of exercise on oxidant stress and on alterations in antioxidant defense in elderly has been investigated extensively. However, the impact of regularly performed long-term physical activity starting from adulthood and prolonged up to the old age is not yet clear. We have investigated the changes in the activities of antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) - and lipid peroxidation in various tissues of rats which had performed (old-trained) or had not performed (old-control) regular swimming exercise for one year. These animals were compared with young-sedentary rats. Increased lipid peroxidation was observed with ageing in all tissues (heart, liver, kidney, striated muscle) and swimming had no additional effect on this elevation of lipid peroxidation. Heart and striated muscle SOD activites, and striated muscle CAT activity increased as a consequence of ageing, whereas kidney and liver CAT activities, as well as GPx activities in kidney, liver, lung and heart were significantly decreased compared to young controls. Lung and heart SOD, liver CAT activities as well as GPx activities in liver, lung and heart were increased significantly in rats which performed exercise during ageing, compared to the old-control group. These findings suggest that lifelong exercise can improve the antioxidant defense in many tissues without constituting any additional oxidant stress.  相似文献   

2.
With the premise that oxygen free radicals may be responsible for the severity and complications of diabetes, the level of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as the oxidative damage were examined in the tissues of control, diabetic and treated rats. After three weeks of diabetes, the activity of CAT was significantly increased in heart in diabetes (about 6-fold) but decreased in liver. The SOD activity decreased significantly in liver but increased in brain. The activity of GPx decreased significantly in liver and increased in kidney. A significant increase was observed in oxidative damage in heart and kidney and a small increase in brain with decrease in liver and muscle. Vanadate and fenugreek (Trigonella foenum graecum) administration to diabetic animals showed a reversal of the disturbed antioxidant levels and peroxidative damage. Results suggest that oxidative stress play a key role in the complications of diabetes. Vanadate and fenugreek seeds showed an encouraging antioxidant property and can be valuable candidates in the treatment of the reversal of the complications of diabetes.  相似文献   

3.
Activities of the anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase were studied in rat tissues to determine the ability of detergents both to solubilize the enzymes and also to stabilize enzyme activity. Rat brain, heart and liver were homogenized in 0.1M KCl, 0.1% sodium dodecyl sulfate, 0.1% lubrol, or 0.1% cetyl-trimethylammonium bromide. In general lubrol was more effective than the other solutions in solubilizing GPx and catalase. Lubrol and 0.1M KCl were equally effective in solubilizing SOD. The highest enzyme activities were (1) SOD: 2484 ng/mg (brain), 2501 ng/mg (heart), and 5586 ng/mg (liver); (2) GPx: 224 mU/mg (brain), 1870 mU/mg (heart), and 7332 mU/mg (liver); (3) catalase: 2.8 mU/mg (brain), 10.6 mU/mg (heart), and 309 mU/mg (liver). While cetyl trimethylammonium bromide is marginally better than sodium dodecyl sulfate in solubilizing active enzyme, neither ionic detergent has any advantage over lubrol or 0.1M KCl. For catalase and GPx, enzyme activity loss with time is biphasic. After initial, rapid activity loss (1–5 days for GPx and 7–10 days for catalase) the differences noted among the homogenizing solutions disappear and very little if any activity loss is noted over the next 2–3 weeks. For catalase and GPx, only baseline enzyme activity from t = 0 – 3 weeks is found in the most chaotropic solution, 0.1% sodium dodecyl sulfate while biphasic activity loss is most pronounced in 0.1% lubrol. These results may indicate active GPx and catalase species stabilized by a lipid-like environment. Correlatingin vitro catalase or GPx measurements within vivo anti-oxidative protection may underestimate tissue defences.  相似文献   

4.
Reactive oxygen species (ROS) and antioxidants are essential to maintain a redox balance within tissues and cells. Intracellular ROS regulate key cellular functions such as proliferation, differentiation and apoptosis through cellular signaling, and response to injury. The redox environment is particularly important for stem/progenitor cells, as their self-renewal and differentiation has been shown to be redox sensitive. However, not much is known about ROS and antioxidant protein function in freshly isolated keratinocytes, notably the different keratinocyte subpopulations. Immunostaining of neonatal cutaneous sections revealed that antioxidant enzymes [catalase, SOD2, gluthatione peroxidase-1 (GPx)] and ROS are localized predominantly to the epidermis. We isolated keratinocyte subpopulations and found lower levels of SOD2, catalase and GPx, as well as decreased SOD and catalase activity in an epidermal side population with stem cell-like characteristics (EpSPs) compared to more differentiated (Non-SP) keratinocytes. EpSPs also exhibited less mitochondrial area, fewer peroxisomes and produced lower levels of ROS than Non-SPs. Finally, EpSPs were more resistant to UV radiation than their progeny. Together, our data indicate ROS and antioxidant levels are decreased in stem-like EpSPs.  相似文献   

5.
Diving seals experience heart rate reduction and preferential distribution of the oxygenated blood flow to the heart and brain, widespread peripheral vasoconstriction, and selective ischemia in the most hypoxia-tolerant tissues. The first breath after the dive restores the oxygenated blood flow to all tissues and raises the potential for the production of reactive oxygen species (ROS). We hypothesized that in order to counteract the damaging effects of ROS and to tolerate repetitive cycles of ischemia/reperfusion associated with diving, ringed seal (Phoca hispida) tissues have elevated activities of antioxidant enzymes. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were measured by spectrophotometric techniques in heart, kidney, liver, lung, and muscle extracts of ringed seals and domestic pigs (Sus scrofa). The results suggest that in ringed seal heart SOD, GPx and GST activities are an efficient protective mechanism for counteracting ROS production and its deleterious effects. Apparently CAT activity in seal liver and GPx activity in seal muscle participate in the removal of hydroperoxides, while seal lung appears to be protected from oxidative damage by SOD and GPx activities.  相似文献   

6.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

7.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

8.
The beneficial effects of exercise in reducing the incidence of cardiovascular diseases are well known and the abuse of anabolic androgenic steroids (AAS) has been associated to cardiovascular disorders. Previous studies showed that heart protection to ischemic events would be mediated by increasing the antioxidant enzyme activities. Here, we investigated the impact of exercise and high doses of the AAS nandrolone decanoate (DECA), 10 mg kg−1 body weight during 8 weeks, in cardiac tolerance to ischemic events as well as on the activity of antioxidant enzymes in rats. After a global ischemic event, hearts of control trained (CT) group recovered about 70% of left ventricular developed pressure, whereas DECA trained (DT), control sedentary (CS) and DECA sedentary (DS) animals recovered only about 20%. Similarly, heart infarct size was significantly lower in the CT group compared to animals of the three other groups. The activities of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were significantly higher in CT animals than in the other three groups, whereas catalase activity was not affected in any group. Together, these results indicate that chronic treatment with DECA cause an impairment of exercise induction of antioxidant enzyme activities, leading to a reduced cardioprotection upon ischemic events.  相似文献   

9.
The effect of long-term administration of alcohol and cigarette smoke independently and both in combination on lipid peroxidation and antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) was studied in liver, kidney, heart and lungs of albino rats. The levels of peroxidation products viz., malondialdehyde, hydroperoxides and conjugated dienes were increased in all the tissues of alcohol administered and smoke-exposed rats. Activities of SOD and CAT were decreased in alcohol-treated and alcohol and smoke combination groups, but increased in smoke-exposed group. Activities of GPx and GST have shown an increase, while concentration of reduced glutathione was found decreased in all the three groups.  相似文献   

10.
The effects of hypoxia exposure and subsequent normoxic recovery on the levels of lipid peroxides (LOOH), thiobarbituric acid reactive substances (TBARS), carbonylproteins, total glutathione levels, and the activities of six antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of the common carp Cyprinus carpio. Hypoxia exposure (25% of normal oxygen level) for 5h generally decreased the levels of oxidative damage products, but in liver TBARS content were elevated. Hypoxia stimulated increases in the activities of catalase (by 1.7-fold) and glutathione peroxidase (GPx) (by 1.3-fold) in brain supporting the idea that anticipatory preparation takes place in order to deal with the oxidative stress that will occur during reoxygenation. In liver, only GPx activity was reduced under hypoxia and reoxygenation while other enzymes were unaffected. Kidney showed decreased activity of GPx under aerobic recovery but superoxide dismutase (SOD) and catalase responded with sharp increases in activities. Skeletal muscle showed minor changes with a reduction in GPx activity under hypoxia exposure and an increase in SOD activity under recovery. Responses by antioxidant defenses in carp organs appear to include preparatory increases during hypoxia by some antioxidant enzymes in brain but a more direct response to oxidative insult during recovery appears to trigger enzyme responses in kidney and skeletal muscle.  相似文献   

11.
Oxidative stress caused by redundant free radical, lipid oxygen and peroxide usually results in the pathogenesis of various diseases, which can be alleviated by cellular antioxidant enzymes. According to statistics, there are different incidence rates of some diseases depending on the gender. The present study aimed to investigate potential gender-related differences of antioxidant enzymes in mice. The activities of glutamate-cysteine ligase (GCL), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) in the kidney, brain, lung and heart of both male and female mice were determined. Our results showed that GPx and GCL activities were higher in female kidney and brain than those in male. On the other hand, the activities of SOD were higher in female brain and lung than those in male. Moreover, female kidney appeared to show higher activities of CAT than the male kidney. But the activities of GCL and GPx were higher in male heart than those in female. Taken together, our results demonstrate that there are gender-related differences in the activities of cellular antioxidant enzymes in various important organs in mice. Variations in such enzymes may be the explanation for some gender-related diseases.  相似文献   

12.
Whereas oxidative stress is linked to cellular damage, reactive oxygen species (ROS) are also believed to be involved in the propagation of signaling pathways. Studies on the role of ROS in pancreatic beta‐cell physiology, in contrast to pathophysiology, have not yet been reported. In this study we investigate the importance of maintaining cellular redox state on pancreatic beta‐cell function and viability, and the effects of leptin and adiponectin on this balance. Experiments were conducted on RINm and MIN6 pancreatic beta‐cells. Leptin (1–100 ng/ml) and adiponectin (1–100 nM) increased ROS accumulation, as was determined by DCFDA fluorescence. Using specific inhibitors, we found that the increase in ROS levels was mediated by NADPH oxidase (Nox), but not by AMP kinase (AMPK) or phosphatidyl inositol 3 kinase (PI3K). Leptin and adiponectin increased beta‐cell number as detected by the XTT method, but did not affect apoptosis, indicating that the increased cell number results from increased proliferation. The adipokines‐induced increase in viability is ROS dependent as this effect was abolished by N‐acetyl‐L‐cysteine (NAC) or PEG‐catalase. In addition, insulin secretion was found to be regulated by alterations in redox state, but not by adipokines. Finally, the effects of the various treatments on activity and mRNA expression of several antioxidant enzymes were determined. Both leptin and adiponectin reduced mRNA levels of superoxide dismutase (SOD)1. Adiponectin also decreased SOD activity and increased catalase and glutathione peroxidase (GPx) activities in the presence of H2O2. The results of this study show that leptin and adiponectin, by inducing a physiological increase in ROS levels, may be positive regulators of beta‐cell mass. J. Cell. Biochem. 113: 1966–1976, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Modulatory effect of a formulated diet based on cereals, pulses and spices incorporated with crude palm oil (CPO), soybean oil (SBO) or cod liver oil (CLO) at 10% dietary level on oxidative stress and antioxidant enzymes was studied in liver and kidney tissues. Activity of alkaline phosphatase (ALP) and acid phosphatase (ACP) increased significantly in serum in various experimental groups. Significant increase in hepatic antioxidant enzymes, catalase, glutathione peroxidase (GPx) was also seen in the experimental groups. SOD activity showed a mixed response. Further, kidney antioxidant enzymes did not show much change compared to those in liver. The results indicated dietary lipid as the key players in determining cellular susceptibility to oxidative stress, which could be modulated by cereals, pulses and spices in the diet.  相似文献   

14.
The present study showed that exposure of chlorpyrifos, O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate (CPF), a widely used pesticide in rats caused significant inhibition of acetylcholinesterase (AChE) activity in different tissues viz., liver, kidney and spleen. CPF exposure also generated oxidative stress in the body, as evidenced by increase in thiobarbituric acid reactive substances (TBARS), decrease in the levels of superoxide scavenging enzymes viz., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in liver, kidney and spleen at all doses. Malondialdehyde levels were increased by 14%, 31% and 76% in liver, 11%, 31% and 64% in kidney and 32%, 75% and 99.9% in spleen when 50 mg, 100 mg and 200 mg/kg body wt. CPF was administered for three days. SOD and CAT activities were decreased in liver, kidney and spleen, while GPx activity showed slight increase in kidney at 50 mg and 100 mg dose, and decreased on further increase in dose of CPF. Liver and spleen showed dose-dependent decrease in GPx activity. The levels of reduced glutathione (GSH) was decreased, while oxidized glutathione (GSSG) was increased, thus a marked fall in GSH/GSSG ratio was observed in all tissues. A maximum decrease of 83% was observed in liver, followed by kidney and spleen, which showed 78% and 57% decrease, respectively in group given 200 mg/kg CPF. The levels of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) were also decreased in liver and kidney, while spleen showed increase at lower doses, but decrease at high dose of CPF. The data provide evidence for induction of oxidative stress on CPF exposure.  相似文献   

15.
Manganese superoxide dismutase (Mn-SOD) plays an important role in attenuating free radical-induced oxidative damage. The purpose of this research was to determine if increased expression of Mn-SOD gene alters intracellular redox status. Twelve week old male B6C3 mice, engineered to express human Mn-SOD in multiple organs, and their nontransgenic littermates were assessed for oxidative stress and antioxidant status in heart, brain, lung, skeletal muscle, liver, and kidney. Relative to their nontransgenic littermates, transgenic mice had significantly (p <.01) higher activity of Mn-SOD in heart, skeletal muscle, lung, and brain. Copper, zinc (Cu,Zn)-SOD activity was significantly higher in kidney, whereas catalase activity was lower in brain and liver. The activities of selenium (Se)-GSH peroxidase and non-Se-GSH peroxidase, and levels of vitamin E, ascorbic acid and GSH were not significantly different in any tissues measured between Mn-SOD transgenic mice and their nontransgenic controls. The levels of malondialdehyde were significantly lower in the muscle and heart of Mn-SOD mice, and conjugated dienes and protein carbonyls were not altered in any tissues measured. The results obtained showed that expression of human SOD gene did not systematical alter antioxidant systems or adversely affect the redox state of the transgenic mice. The results also suggest that expression of human SOD gene confers protection against peroxidative damage to membrane lipids.  相似文献   

16.
The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin‐induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8‐hydroxy‐2'‐deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin‐induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:398‐405, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21501  相似文献   

17.
The antioxidant effects of a polysaccharide–peptide complex (F22) from mushroom (Pleurotus abalonus)-fruiting bodies were studied. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the liver, kidney, and brain of senescence-accelerated mice showed a marked increase after treatment with the polysaccharide–peptide complex. Concurrently, the gene expression levels of SOD, CAT, and GPx, as determined with real-time polymerase chain reaction, were up-regulated in the liver, kidney, and brain, whereas the MDA content in these organs declined. The maximal lifespan of the mice was prolonged.  相似文献   

18.
Antioxidant enzymes (AOEs), glutathione peroxidase (GPx), superoxide dismutase(SOD) and catalase (CAT) play an important role in protecting tissues from reactive oxygen species (ROS) reactions. The objective of this study was to determine the developmental regulation of AOEs mRNA levels and activity in tissues of different growing phases pigs (Sus scrofa). Nine different tissues were collected from thirty Duroc x Landrace x Yorkshire male pigs with six animals in each age (1, 42, 84, 126 and 168 days) to assay for GPx, CAT and CuZnSOD mRNA expression and activities. Results showed that GPx, CAT, and CuZnSOD mRNA levels in liver increased (P<0.05) at the first stage, and thereafter their levels began to decline (P<0.05), and the maximal mRNA levels of these AOEs were seen at the age of 42, 84, and 126 days, respectively. In Muscle, GPx and CAT mRNA level increased from 1 to 84 days and 1 to 126 days, respectively, and thereafter their levels began to decline, whereas CuZnSOD mRNA level steadily increased (P<0.05) following birth. Activity expression of AOEs in selected tissues was increased as pigs became older (P<0.05) with the exception of CuZnSOD activity in muscle, but changes in AOEs mRNA levels between ages did not fully account for all changes in activity. GPx and CuZnSOD mRNA were most abundantly expressed in muscle, while CAT mRNA were most abundant in brain. AOEs may exert cell and tissue-specific roles in metabolic regulation beyond their mere antioxidant potential. In conclusion, expression of AOEs mRNA and activity exhibit different developmental profiles in various tissues of pigs, and the regulation of AOEs is not tightly coordinated in either tissue.  相似文献   

19.
Lipid peroxidation and activity of antioxidant enzymes in diabetic rats   总被引:10,自引:0,他引:10  
We hypothesized that oxygen free radicals (OFRs) may be involved in pathogenesis of diabetic complications. We therefore investigated the levels of lipid peroxidation by measuring thiobarbituric acid reactive substances (TBARS) and activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)] in tissues and blood of streptozotocin (STZ)-induced diabetic rats. The animals were divided into two groups: control and diabetic. After 10 weeks (wks) of diabetes the animals were sacrificed and liver, heart, pancreas, kidney and blood were collected for measurement of various biochemical parameters. Diabetes was associated with a significant increase in TBARS in pancreas, heart and blood. The activity of CAT increased in liver, heart and blood but decreased in kidney. GSH-Px activity increased in pancreas and kidney while SOD activity increased in liver, heart and pancreas. Our findings suggest that oxidative stress occurs in diabetic state and that oxidative damage to tissues may be a contributory factor in complications associated with diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号