首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
弱毒疫苗ToMV-K的复制酶基因在2670-2672核苷酸处发生UGA突变,研究表明该突变是导致病毒弱化的主要原因。通过ToMV-K复制酶的突变区与其它具有UGA渗漏终止密码的植物ssRNA病毒基因组通读结构区的分析和比较,发现ToMV-K和其它植物病毒的UGA渗漏与通读相关基因的共同特征:CGG基元,通读区的α-螺旋结构和一些疏水氨基酸残基使UGA的通读成为可能。这些渗漏与通读的特征可能才是ToMV\|K致弱的根本原因。可以根据这一模式,探讨对其它植物ssRNA的病毒如PVX、PVY、CMV等的基因组改造和致弱研究。  相似文献   

3.
用双脱氧未端经终止法对侵染性烟草共现毒普通株中国分离物(TMV-virlgar,Chinese lsoblate,TMV-Cv)和番茄株弱毒轩TMV-N14(Attenuated TMV vaccine strain)基因组cDNAs的核苷酸全序列进行了测定,并分析和比较了其基因组的结构和特征。结果表明:普通株基因组(Genbank接收号:AF165190)为6395个核苷酸:4个功能性开放阅读框  相似文献   

4.
Three deletion mutants of tobacco mosaic virus (TMV) 54-kD putative replicase gene (54K) were obtained by PCR, and cloned into plant expression vector p208, then transformed into Nicotiana tabacum L. cv. SR1 by Agrobacterium tumefaciens (Smith et Townsend) Conn Ti plasmid-mediated transformation. All the transgenic plants with the N-terminal deletion mutant, the C-terminal deletion mutant and the only 261 nucleotides region from the central part of the 54K ORF showed significant resistance against TMV.  相似文献   

5.
Three deletion mutants of tobacco mosaic virus (TMV) 54-kD putative replicase gene (54K) were obtained by PCR, and cloned into plant expression vector p208, then transformed into Nicotiana tabacum L. cv. SR1 by Agrobacterium tumefaciens (Smith et Townsend) Conn Ti plasmid-mediated transformation. All the transgenic plants with the N-terminal deletion mutant, the C-terminal deletion mutant and the only 261 nucleotides region from the central part of the 54K ORF showed significant resistance against TMV.   相似文献   

6.
马铃薯Y病毒HC-Pro中心区域在病毒协生作用中的主导地位   总被引:3,自引:0,他引:3  
利用PCR方法获得了马铃薯病毒中国株系(PVY-C)HC-Pro基因的5个缺失突变体,构建了相应的植物表达载体。通过土壤农杆菌(Agrobacterium tumefaciens)介导法转化了烟草品种K326(Nicotina tabacum cv.k326)。PCR和Southern blot分析证明了HC-Pro基因及其缺失突变体已整合到烟草基因组中,Western blot表明它们在转基因烟草中得到了表达。侵染性试验发现HC-Pro中心区域介导转基因烟草中PVC-C和黄瓜花叶病毒(CMV)、PVY-C和马铃薯X病毒(PVX)之间的协生作用,从而明确了PVY-C HC-Pro中心区域为病毒协生作用的功能区域。  相似文献   

7.
Three types of mutation were introduced into the sequence encoding the GDD motif of the putative replicase component of potato virus X (PVX). All three mutations rendered the viral genome completely noninfectious when inoculated into Nicotiana clevelandii or into protoplasts of Nicotiana tabacum (cv. Samsun NN). In order to test whether these negative mutations could inactivate the viral genome in trans, the mutant genes were expressed in transformed N.tabacum (cv. Samsun NN) under control of the 35S RNA promoter of cauliflower mosaic virus and the transformed lines were inoculated with PVX. In 10 lines tested in which the GDD motif was expressed as GAD or GED there was no effect on susceptibility to PVX. In two of four lines transformed to express the ADD form of the conserved motif, the F1 and F2 progeny plants were highly resistant to infection by PVX, although only to strains closely related to the source of the transgene. The resistance was associated with suppression of PVX accumulation in the inoculated and systemic leaves and in protoplasts of the transformed plants, although some low level viral RNA production was observed in the inoculated but not the systemic leaves when the inoculum was as high as 100 or 250 micrograms/ml PVX RNA. These results suggest for a plant virus, as reported previously for Q beta phage, that virus resistance may be engineered by expression of dominant negative mutant forms of viral genes in transformed cells.  相似文献   

8.
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.  相似文献   

9.
Y Bao  S A Carter    R S Nelson 《Journal of virology》1996,70(9):6378-6383
Nucleotide substitutions at two positions within the open reading frame encoding the 126-kDa protein in the attenuated masked (M) strain of tobacco mosaic tobamovirus (TMV) to those found in the virulent U1-TMV genome led to the induction of near U1-TMV-like symptoms on leaves of Nicotiana tabacum L. cv. Xanthi nn by progeny virus (M. H. Shintaku, S. A. Carter, Y. Bao, and R. S. Nelson, Virology 221:218-225, 1996). In this study, further site-directed mutations were made at these positions within the M strain cDNA to determine whether the protein or nucleotide sequence directly controlled the symptom phenotype. The protein and not the nucleotide sequence directly controlled the symptom phenotype when amino acid 360 within the 126-kDa protein sequence was altered and likely controlled the symptom phenotype when amino acid 601 was altered. The effects of the substitutions at amino acid position 360 on viral protein accumulation were studied by pulse-labeling proteins in infected protoplasts. Accumulation of the 126- and 183-kDa proteins was less for an attenuated mutant than for two virulent mutants, but the viral movement protein and coat protein accumulated to levels reported to be sufficient for normal systemic symptom development. The size of necrotic local lesions on N. tabacum L. cv. Xanthi NN was negatively correlated with symptom development and accumulation of the 126-kDa protein for these mutants. With reference to this last finding, an explanation of the cause of the differing symptoms induced by these viruses is presented.  相似文献   

10.
In many plant RNA viruses, Domains 1, 2 and 3 are conserved in replicase proteins. In order to examine the interference of viral replication by the Domain 1 sequence, we generated transgenic plants transformed with DNA corresponding to the Domain 1 sequence of the TMV 126 kDa protein. This DNA sequence includes the TMV RNA from nucleotides 1 to 2,149, which comprises both the 5'-untranslated and methyl transferase region. The transgenic plants obtained showed complete resistance to TMV infection. The presence of the Domain 1 sequence in the plants completely prevented local necrosis in Nicotiana tabacum cv. Xanthi nc, and any systemic development of symptoms in Nicotiana tabacum Xanthi upon TMV inoculation. Most transgenic plants sustained the conferred resistance even under TMV inoculum concentrations up to as high as 1,000 microg/ml. To detect any accumulation of TMV coat protein or viral RNA in infected transgenic plants, immunochemical tests and Northern blot analyses were carried out. Neither viral RNA or coat protein was detectable in the systemic leaves of the completely resistant transgenic plants, whereas they were accumulated in large quantities in all of the control plants. Because of the conservation of Domain 1 in many plant RNA viruses, the acquisition of resistance to virus infection using the Domain 1 sequence appears to be a very effective strategy for breeding of viral resistant plants.  相似文献   

11.
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.  相似文献   

12.
The P30 movement protein (MP) of tomato mosaic tobamovirus (ToMV) is synthesized in the early stages of infection and is phosphorylated in vivo. Here, we determined that serine 37 and serine 238 in the ToMV MP are sites of phosphorylation. MP mutants in which serine was replaced by alanine at positions 37 and 238 (LQ37A238A) or at position 37 only (LQ37A) were not phosphorylated, and mutant viruses did not infect tobacco or tomato plants. By contrast, mutation of serine 238 to alanine did not affect the infectivity of the virus (LQ238A). To investigate the subcellular localization of mutant MPs, we constructed viruses that expressed each mutant MP fused with the green fluorescent protein (GFP) of Aequorea victoria. Wild-type and mutant LQ238A MP fusion proteins showed distinct temporally regulated patterns of MP-GFP localization in protoplasts and formation of fluorescent ring-shaped infection sites on Nicotiana benthamiana. However mutant virus LQ37A MP-GFP did not show a distinct pattern of localization or formation of fluorescent rings. Pulse-chase experiments revealed that MP produced by mutant virus LQ37A was less stable than wild-type and LQ238A MPs. MP which contained threonine at position 37 was phosphorylated, but the stability of the MP in vivo was very low. These studies suggest that the presence of serine at position 37 or phosphorylation of serine 37 is essential for intracellular localization and stability of the MP, which is necessary for the protein to function.  相似文献   

13.
The effects of acibenzolar-S-methyl (ASM) and four combinations of plant growth-promoting rhizobacteria (PGPR) on the reproduction of a tobacco cyst nematode, Globodera tabacum solanacearum, and growth of Nicotiana tabacum (cv. K326 and Xanthi) were tested under greenhouse and field conditions. The PGPR included combinations of Bacillus subtilis A13 with B. pumilis INR7, B. pumilis SE34, B. licheniformis IN937b, or B. amyloliquefaciens IN937a, respectively. Among the four rhizobacterial combinations, IN937a + A13 exhibited the most consistent reduction in G. t. solanacearum cysts under greenhouse and field conditions. No undesirable effects of IN937a + A13 were observed on tobacco growth under greenhouse and field conditions. Use of INR7 + A13 reduced G. t. solanacearum reproduction on flue-cured tobacco cv. K326 but not on oriental tobacco cv. Xanthi. Application of ASM reduced final numbers of G. t. solanacearum cysts, but also resulted in phytotoxicity mainly under the greenhouse conditions. When oriental tobacco seedlings were pre-grown in a IN937a + A13-treated soil-less medium, a single application of ASM at 200 mg/L one week after transplanting significantly reduced G. t. solanacearum reproduction in the field.  相似文献   

14.
Nicotiana tabacum cv. Xanthi transgenic plants expressing ORF13 of Agrobacterium rhizogenes 8196 T-DNA under the 35S RNA promoter from the cauliflower mosaic virus displayed developmental abnormalities. They were small, with short and variable internodal lengths, their root systems were poorly developed; leaves were small, asymmetric, rounded, wrinkled and dark green; flowers were short, and irregularly shaped. They exhibited reduced apical dominance and regularly produced offshoots at the base of the plant. This phenotype was also exhibited by offshoots of normal N. tabacum cv. Xanthi stock grafted with a transgenic scion indicating that expression of ORF13 influences plant development via diffusible factor(s).  相似文献   

15.
Akad  F.  Teverovsky  E.  David  A.  Czosnek  H.  Gidoni  D.  Gera  A.  Loebenstein  G. 《Plant molecular biology》1999,40(6):969-976
We have shown previously that localization of tobacco mosaic virus (TMV) in tobacco is associated with a ca. 23 kDa protein that inhibits replication of several plant viruses. This protein, named inhibitor of virus replication (IVR), was purified from the medium of TMV-inoculated protoplasts derived from Nicotiana tabacum cv. Samsun NN. IVR was shown to be present also in induced-resistant leaf tissue of N. tabacum cv. Samsun NN. We prepared an expression cDNA library from such induced-resistant tissue and screened it with a polyclonal antibody raised against the IVR protein. A 1016 bp clone (named NC330) containing a 597 bp open reading frame, coding for a 21.6 kDa polypeptide, was isolated. The NC330 clone hybridized with RNA from induced-resistant tissue from N. tabacum cv. Samsun NN but not with RNA from non-induced tissue. Likewise, it did not hybridize with RNA from infected or uninfected tissue of N. tabacum cv. Samsun nn. Similarly, the NC330 cloned probe hybridized with the RT-PCR products from RNA of the induced-resistant tissue only. In Southern blot hybridization the NC330 DNA probe detected several genomic DNA fragments in both N. tabacum cv. Samsun NN and Samsun nn. The size of the DNA fragments differed in Samsun NN and Samsun nn. We suggest that DNA encoding the IVR-like protein is present in resistant and susceptible N. tabacum genotypes, but is expressed only in NN. We have inserted the NC330 into the expression vector pET22b and a 21.6 kDa protein was produced in Escherichia coli that reacted in immunoblots with the IVR antibody. This protein greatly reduced replication of TMV in N. tabacum cv. Samsun nn leaf disk assays.  相似文献   

16.
A hybrid virus (CMVcymMP) constructed by replacing the movement protein (MP) of cucumber mosaic cucumovirus (CMV) with that of cymbidium ringspot tombusvirus (CymRSV) was viable and could efficiently spread both cell to cell and long distance in host plants. The hybrid virus was able to move cell to cell in the absence of functional CP, whereas CP-deficient CMV was restricted to single inoculated cells. In several Chenopodium and Nicotiana species, the symptom phenotype of the hybrid virus infection was clearly determined by the foreign MP gene. In Nicotiana debneyi and Nicotiana tabacum cv. Xanthi, the hybrid virus could move systemically, contrary to CymRSV.  相似文献   

17.
18.
Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of Pseudomonas syringae. Volatile compounds released by pathogen-inoculated tobacco plants were collected, identified, and quantified. Tobacco plants infected with the avirulent strains P. syringae pv. maculicola ES4326 (Psm ES4326) or pv. tomato DC3000 (Pst DC3000), emitted quantitatively different, but qualitatively similar volatile blends of (E)-beta-ocimene, linalool, methyl salicylate (MeSA), indole, caryophyllene, beta-elemene, alpha-farnesene, and two unidentified sesquiterpenes. Plants treated with the hrcC mutant of Pst DC3000 (hrcC, deficient in the type-III secretion system) released low levels of many of the same volatile compounds as in Psm ES4326- or Pst DC3000-infected plants, with the exception of MeSA, which occurred only in trace amounts. Interaction of the virulent pathogen P. syringae pv. tabaci (Pstb), with tobacco plants resulted in a different volatile blend, consisting of MeSA and two unidentified sesquiterpenes. Overall, maximum volatile emissions occurred within 36 h post-inoculation in all the treatments except for the Pstb infection that produced peak volatile emissions about 60 h post-inoculation. (E)-beta-Ocimene was released in a diurnal pattern with the greatest emissions during the day and reduced emissions at night. Both avirulent strains, Psm ES4326 and Pst DC3000, induced accumulation of free salicylic acid (SA) within 6 h after inoculation and conjugated SA within 60 h and 36 h respectively. In contrast, SA inductions by the virulent strain Pstb occurred much later and conjugated SA increased slowly for a longer period of time, while the hrcC mutant strain did not trigger free and conjugated SA accumulations in amounts significantly different from control plants. Jasmonic acid, known to induce plant volatile emissions, was not produced in significantly higher levels in inoculated plants compared to the control plants in any treatments, indicating that induced volatile emissions from tobacco plants in response to P. syringae are not linked to changes in jasmonic acid.  相似文献   

19.
The influence of various environmental factors on biomass partitioning between shoots and roots in transgenic tobacco (Nicotiana tabacum) plants expressing the movement protein (MP) of tobacco mosaic virus (TMV) was investigated. TMV-MP-expressing transgenic plants exhibited a root-to-shoot ratio that was approximately 40% below that of transgenic vector control plants. When transgenic plants expressing the TMV-MP were subjected to water-stress conditions, the root-to-shoot ratio was increased to a value comparable to that of control plants subjected to the same water-stress treatment. Although the root-to-shoot ratio was increased by N or P deficiencies, the TMV-MP-induced alteration in biomass partitioning was not overcome. Surprisingly, under K+-deficient growth conditions, both TMV-MP-expressing and control plants exhibited reduced root-to-shoot ratios when compared with plants grown in the presence of sufficient K+. Furthermore, plant growth under K+-deficient conditions did not alleviate the influence of the TMV-MP over resource allocation to the roots. These results are discussed in terms of possible mechanisms by which stress signals could cause an alteration in biomass partitioning between shoots and roots in control and transgenic tobacco plants expressing the TMV-MP.  相似文献   

20.
RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号