首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity‐forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20–30 kb were detected by pulse‐field gel electrophoresis, but no low‐molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria‐dependent PCD pathways, was detected in the cavity‐forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia‐induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.  相似文献   

2.

Background

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings

We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation.

Conclusions

We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage.  相似文献   

3.
Recent results have identified mitochondria as centers of stress-induced generation of reactive oxygen species in plants. Depolarization of plant mitochondrial membrane during stress results the release of programmed cell death (PCD)-inducing factors in the cytosol in a fashion similar to the onset of animal-like PCD. Herein, we report significant similarities of animal-like PCD and salinity stress-induced plant PCD. Short-term salinity stress (3 h) led to depolarization of the mitochondrial membrane, release of cytochrome c (CYT-c), which was visualized using a contemporary molecular technique, activation of caspase-3 type proteases and the onset of PCD in wild type tobacco plants, Nicotiana tabacum cv. Petit Havana. However, PCD was not manifested during long-term salinity stress (24 h). Interestingly long-term salinity stress led to necrotic-like features, which were accompanied by collapse of respiration, reduction of key components of the respiratory chain, such as CYT-c and alternative oxidase, ATP depletion and high proteolytic activity. The results suggest that salinity stress of tobacco plants in planta leads to the onset of animal-like PCD only during the early stages post-stress, while long-term stress leads to necrotic-like features.  相似文献   

4.
Background information. PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). Results. SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labelling)‐positive cells both in inactive and feeding animals. The DA‐induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto‐c (cytochrome c) translocation into the cytosol and methyl‐β‐cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto‐c was under the control of Bcl‐2 and Bad. DA also increased the active caspase‐3 in gland cells while D2 receptor antagonists and TEA attenuated it. Conclusion. Our results provide evidence for a type of transmitter‐mediated pathway that regulates the PCD of secretory cells in a mitochondrial‐caspase‐dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto‐c, ceramide, Bcl‐2 proteins and caspase‐3, but not caspase‐8, was demonstrated in cells involved in the DA‐induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.  相似文献   

5.
Qi Y  Wang H  Zou Y  Liu C  Liu Y  Wang Y  Zhang W 《FEBS letters》2011,(1):231-239
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H2O2-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψm) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψm relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψm and inhibiting the amplification of ROS.  相似文献   

6.
Concanavalin A (ConA), normally a mitogen of T-lymphocytes, was found to be a cell cycle-independent apoptosis-inducing agent in cultured murine macrophage PU5-1.8 cells. This assertion is based on the following observations: (1) ConA increased the number of cells with hypo-diploid DNA in a dose dependent manner as revealed by flow cytometry; (2) ConA elicited DNA fragmentation and the cytotoxicity of ConA was suppressed by -D-methylmannoside which blocks the lectin site of ConA; (3) ConA was able to release cytochrome c (cyto c) into the cytosol of PU5-1.8 cells. When isolated mitochondria were incubated with ConA, release of cyto c was observed too. Interestingly, clustering of mitochondria was found in the cytosol under a confocal microscope after ConA treatment. When cells were incubated with ConA-FITC and subsequently with mitotracker red (a probe for mitochondria), co-localization of fluorescence signals was observed. These results suggest that ConA was delivered to the mitochondria, induced mitochondrial clustering and released cyto c. Our results also show that introduction of exogenous cyto c electroporationally into ConA-untreated cells elicited DNA fragmentation. On the other hand, introduction of specific antibody against cyto c into PU5-1.8 cells suppressed the ConA-mediated cell death. Taken together, our results indicate that ConA induced apoptosis in PU5-1.8 cells through mitochondrial clustering and release of cyto c and the release of cyto c was sufficient to elicit apoptosis in PU5-1.8 cells.  相似文献   

7.
8.
Mitochondria play a pivotal role in the regulation of apoptosis. An imbalance in apoptosis can lead to disease. Unscheduled apoptosis has been linked to neurodegeneration while inhibition of apoptosis can cause cancer. An early and key event during apoptosis is the release of factors from mitochondria. In apoptosis the mitochondrial outer membrane becomes permeable, leading to release of apoptogenic factors into the cytosol. One such factor, cytochrome c, is an electron carrier of the respiratory chain normally trapped within the mitochondrial intermembrane space. Many apoptotic studies investigate mitochondrial outer membrane permeabilization (MOMP) by monitoring the release of cytochrome c. Here, we describe three reliable techniques that detect cytochrome c release from mitochondria, through subcellular fractionation or immunocytochemistry and fluorescence microscopy, or isolated mitochondria and recombinant Bax and t-Bid proteins in vitro. These techniques will help to identify mechanisms and characterize factors regulating MOMP.  相似文献   

9.
Nur77 is reported to undergo translocation to mitochondria in response to apoptotic signaling in a variety of cancer cell lines. It was shown that on the mitochondrial membrane, Nur77 interacts with Bcl-2, leading to the conversion of this protein from a protector to a killer with subsequent release of cytochrome c to the cytosol. Here it is shown that in thymic lymphoma cells resistant to calcium-mediated apoptosis, cytochrome c release is abolished despite of Nur77 mitochondrial targeting. However, cytochrome c release and apoptosis can be restored by treatment with FK506. Hence, the molecular target regulation of the sensitivity of lymphoma cells to calcium signaling is associated with cytochrome c release and is FK506 sensitive. These results provide new insight into the role of FK506-sensitive factors as a critical link between calcium signaling and resistance of lymphoma cells to death.  相似文献   

10.
The effect of histones on the release of apoptogenic factors has been studied. The incubation of H1 histone or total histones with mitochondria from a rat liver results in their binding to mitochondria. Furthermore, histones induce the release of cytochrome c and a number of other proteins from the intermembranous space of mitochondria. Proteins released from mitochondria in the presence of histones exhibit apoptogenic activity and induce internucleosomal DNA fragmentation of thymus nuclei. The cytotoxic effect of histones is probably mediated by apoptogenic proteins, which are released from intermembranous space as a response of histone binding to mitochondria.  相似文献   

11.
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar “huamai 8” during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.  相似文献   

12.
In valinomycin induced stimulation of mitochondrial energy dependent reversible swelling, supported by succinate oxidation, cytochrome c (cyto-c) and sulfite oxidase (Sox) [both present in the mitochondrial intermembrane space (MIS)] are released outside. This effect can be observed at a valinomycin concentration as low as 1 nM. The rate of cytosolic NADH/cyto-c electron transport pathway is also greatly stimulated. The test on the permeability of mitochondrial outer membrane to exogenous cyto-c rules out the possibility that the increased rate of exogenous NADH oxidation could be ascribed either to extensively damaged or broken mitochondria. Accumulation of potassium inside the mitochondria, mediated by the highly specific ionophore valinomycin, promotes an increase in the volume of matrix (evidenced by swelling) and the interaction points between the two mitochondrial membranes are expected to increase. The data reported and those previously published are consistent with the view that “respiratory contact sites” are involved in the transfer of reducing equivalents from cytosol to inside the mitochondria both in the absence and the presence of valinomycin. Magnesium ions prevent at least in part the valinomycin effects. Rather than to the dissipation of membrane potential, the pro-apoptotic property of valinomycin can be ascribed to both the release of cyto-c from mitochondria to cytosol and the increased rate of cytosolic NADH coupled with an increased availability of energy in the form of glycolytic ATP, useful for the correct execution of apoptotic program.  相似文献   

13.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

14.
Ferulic acid plays a chemopreventive role in cancer by inducing tumor cells apoptosis. As mitochondria play a key role in the induction of apoptosis in many cells types, here we investigate the mitochondrial permeability transition (MPT) and the release of cytochrome c induced by ferulic acid and its esters in rat testes mitochondria, in TM-3 and MLTC-1 cells. While ferulic acid, but not its esters, induced MPT and cytochrome c release in rat testes isolated mitochondria, in TM-3 cells we found that both ferulic acid and its esters induced cytochrome c release from mitochondria in a dose-dependent manner, suggesting a potential target of these compounds in the induction of cell apoptosis. The apoptosis induced by ferulic acid is therefore associated with the mitochondrial pathway involving cytochrome c release and caspase-3 activation. Cione and Tucci have equally contributed to this article.  相似文献   

15.
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin‐related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 + sectors, ACD2 functions cell autonomously, implicating a pro‐death ACD2 substrate as being cell non‐autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light‐dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro‐death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.  相似文献   

16.
We have previously shown that acetic acid activates a mitochondria‐dependent death process in Saccharomyces cerevisiae and that the ADP/ATP carrier (AAC) is required for mitochondrial outer membrane permeabilization and cytochrome c release. Mitochondrial fragmentation and degradation have also been shown in response to this death stimulus. Herein, we show that autophagy is not active in cells undergoing acetic acid‐induced apoptosis and is therefore not responsible for mitochondrial degradation. Furthermore, we found that the vacuolar protease Pep4p and the AAC proteins have a role in mitochondrial degradation using yeast genetic approaches. Depletion and overexpression of Pep4p, an orthologue of human cathepsin D, delays and enhances mitochondrial degradation respectively. Moreover, Pep4p is released from the vacuole into the cytosol in response to acetic acid treatment. AAC‐deleted cells also show a decrease in mitochondrial degradation in response to acetic acid and are not defective in Pep4p release. Therefore, AAC proteins seem to affect mitochondrial degradation at a step subsequent to Pep4p release, possibly triggering degradation through their involvement in mitochondrial permeabilization. The finding that both mitochondrial AAC proteins and the vacuolar Pep4p interfere with mitochondrial degradation suggests a complex regulation and interplay between mitochondria and the vacuole in yeast programmed cell death.  相似文献   

17.
Cardiolipin oxidation is emerging as an important factor in mitochondrial dysfunction as well as in the initial phase of the apoptotic process. We have previously shown that exogenously added peroxidized cardiolipin sensitizes mitochondria to Ca2+-induced mitochondrial permeability transition (MPT) pore opening and promotes the release of cytochrome c. In this work, the effects of intramitochondrial cardiolipin peroxidation on Ca2+-induced MPT and on the cytochrome c release from mitochondria were studied. The effects of melatonin, a compound known to protect the mitochondria from oxidative damage, on both of these processes were also tested. tert-Butylhydroperoxide (t-BuOOH), a lipid-soluble peroxide that promotes lipid peroxidation, was used to induce intramitochondrial cardiolipin peroxidation. Exposure of heart mitochondria to t-BuOOH resulted in the oxidation of cardiolipin, associated with an increased sensitivity of mitochondria to Ca2+-induced MPT and with the release of cytochrome c from the mitochondria. All these processes were inhibited by micromolar concentrations of melatonin. It is proposed that melatonin inhibits cardiolipin peroxidation in mitochondria, and this effect seems to be responsible for the protection afforded by this agent against the MPT induction and cytochrome c release. Thus, manipulating the oxidation sensitivity of cardiolipin with melatonin may help to control MPT and cytochrome c release, events associated with cell death, and thus, be used for treatment of those disorders characterized by mitochondrial cardiolipin oxidation and Ca2+ overload.  相似文献   

18.
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose‐ and time‐dependent reduction in viability, and the agonist‐treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca2+ levels, resulting in Ca2+ uptake by the mitochondria and subsequent H2O2 accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP‐induced increase of intracellular ATP, essential for the activation of caspase‐like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca2+ concentration but plays a negligible role in eATP‐stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.  相似文献   

19.
The present work reports changes in bioenergetic parameters and mitochondrial activities during the manifestation of two events of programmed cell death (PCD), linked to Abies alba somatic embryogenesis. PCD, evidenced by in situ nuclear DNA fragmentation (TUNEL assay), DNA laddering and cytochrome c release, was decreased in maturing embryogenic tissue with respect to the proliferation stage. In addition, the major cellular energetic metabolites (ATP, NAD(P)H and glucose-6-phosphate) were highered during maturation. The main mitochondrial activities changed during two developmental stages. Mitochondria, isolated from maturing, with respect to proliferating cell masses, showed an increased activity of the alternative oxidase, external NADH dehydrogenase and fatty-acid mediated uncoupling. Conversely, a significant decrease of the mitochondrial KATP+ channel activity was observed. These results suggest a correlation between mitochondrial activities and the manifestation of PCD during the development of somatic embryos. In particular, it is suggested that the KATP+ channel activity could induce an entry of K+ into the matrix, followed by swelling and a release of cytochrome c during proliferation, whereas the alternative pathways, acting as anti-apoptotic factors, may partially counteract PCD events occurring during maturation of somatic embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号