首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium is a known signalling molecule in eukaryotic cells and plays a central role in the regulation of many cellular processes. In the following study, we report on the effect of external calcium treatments on the biotransformation of ginsenoside Rb1 to ginsenoside Rd by Paecilomyces bainier 229-7. We observed that the intracellular calcium content of P. bainier 229-7 mycelia was increased in response to exposure to high external Ca2+ concentrations. Both ginsenoside Rd biotransformation and β-glucosidase activity were both found to be dependent on the external calcium concentration. At an optimal Ca2+ concentration of 45 mM, maximal ginsenoside Rd bioconversion rate of 92.44% was observed and maximal β-glucosidase activity of 0.1778 U was reached in a 72-h biotransformation. The Ca2+ channel blocker Verapamil blocked the trans-membrane influx of calcium and decreased ginsenoside Rd biotransformatiom. In addition, β-glucosidase activity and ginsenoside Rd content decreased by 36.0 and 29.2% respectively after a 72-h incubation in the presence of 0.05 mM Calmodulin (CaM) antagonist Perphenazine. These results suggest that both Ca2+ channels and CaM are involved in ginsenoside Rd biotransformation via regulation of β-glucosidase activity. This is the first report regarding the effects of calcium signal transduction on biotransformation and enzyme activity in fungi.  相似文献   

2.
Chemically synthesized 2-hydroxyethyl jasmonate (HEJA) was for the first time employed to induce the ginsenoside biosynthesis and to manipulate the product heterogeneity in plant cell cultures. The dose response and timing of HEJA elicitation were investigated in cell suspension cultures of Panax notoginseng. The optimal concentration and timing of HEJA addition for both cell growth and ginsenoside accumulation was identified to be 200 μM added on day 4. It was interestingly found that HEJA could stimulate ginsenosides biosynthesis and change their heterogeneity more efficiently than methyl jasmonate (MJA), i.e., the total ginsenoside content and the Rb/Rg ratio increased about 60 and 30% with HEJA elicitation than that by MJA, respectively. The activity of Rb1 biosynthetic enzyme, i.e., UDPG-ginsenoside Rd glucosyltransferase (UGRdGT), was also higher in the former case. A maximal production titer of ginsenoside Rg1, Re, Rb1, and Rd was 47.4±4.8, 52.3±4.4, 190±18, and 12.1±2.5 mg/l with HEJA elicitation, which was about 1.3-, 1.3-, 1.7-, and 2.1-fold than that using MJA, respectively. Early signal events in plant defense response, including oxidative burst and jasmonic acid (JA) biosynthesis, were also examined. Levels of H2O2 and NO in medium and l-phenylalanine ammonia lyase activity in cells were not affected by addition of MJA and HEJA. On the other hand, the JA content in cells was increased with external jasmonates elicitation, and it was inhibited with the addition of JA biosynthesis inhibitors. The results suggest that oxidative burst might not be involved in the jasmonates-elicited signal transduction pathway, and MJA and HEJA may induce the ginsenoside biosynthesis via induction of endogenous JA biosynthesis and key enzymes (such as UGRdGT) in the ginsenoside biosynthetic pathway of P. notoginseng cells. The information is useful for hyperproduction of plant-specific heterogeneous products.  相似文献   

3.
Heterogeneity of ginsenosides is an interesting and important issue because those structure-similar secondary metabolites have different or even totally opposite pharmacological activities. In this work, a new enzyme UDP-glucose:ginsenoside Rd glucosyltransferase (UGRdGT), which catalyzes the formation of ginsenoside Rb1 from ginsenoside Rd [Biotechnol. Bioeng. 89: 444–52, 2005], was purified approximately 145-fold from suspended cells of Panax notoginseng with an overall yield of 0.2%. Purification to apparent homogeneity, as judged by SDS-PAGE, was successfully achieved by using sequential ammonium sulphate precipitation, anion-exchange chromatography and native PAGE. The enzyme had a molecular mass of 36 kDa, and its activity was optimal at pH 8.5 and 35 °C. The enzyme activity was enhanced by Mn2+, Ca2+ and Mg2+, but strongly inhibited by Zn2+, Hg2+, Co2+, Fe2+ and Cu2+. The apparent Km value for UDP-glucose and ginsenoside Rd was 0.32 and 0.14 mM, respectively. The biotransformation yield from ginsenoside Rd to Rb1 by UGRdGT in 50 mM Tris–HCl buffer at pH 8.5 and 35 °C was over 80%. This work provides a basis for further molecular study on the ginsenoside Rb1 biosynthesis by P. notoginseng cells and it is also useful for potential application to in vitro biotransformation from ginsenoside Rd to Rb1.  相似文献   

4.
We have examined the effects of extracellular and intracellular Ca2+ concentrations upon basal and insulin-stimulated 2-deoxyglucose uptake in isolated rat adipocytes. In the absence of extracellular Ca2+, both basal and insulin-stimulated glucose uptake were significantly reduced. Insulin-stimulated glucose transport was optimal at 1 and 2 mM Ca2+. Further increases in extracellular Ca2+ concentration (3 mM) significantly diminished insulin-stimulated glucose uptake. When intracellular Ca2+ concentrations were augmented by ionomycin (1 microM), insulin-stimulated glucose uptake was significantly reduced at extracellular Ca2+ concentrations of 2 and 3 mM. The levels of intracellular free Ca2+ concentrations were then measured with Ca2+ indicator fura-2. The correlation between the levels of intracellular free Ca2+ and the magnitude of insulin-stimulated glucose uptake revealed that the optimal effect of insulin is observed at Ca2+ levels between 140 and 370 nM. At both extremes outside of this window, both low and high levels of intracellular Ca2+ result in diminished cellular responsiveness to insulin. These data suggest that intracellular calcium concentrations may exert a dual role in the regulation of cellular sensitivity to insulin. First, there must exist a minimal concentration of intracellular calcium to promote insulin action. Second, increased levels of intracellular calcium may provide a critical signal for diminution of insulin action.  相似文献   

5.
PtdIns liposomes, at a concentration of 40 microM, induced in FLF the synthesis of t-PA-Ag, and enhanced 45Ca2+ uptake. The induction of t-PA-Ag biosynthesis by PtdIns liposomes in FLF was inhibited by 5-15 microM verapamil, an inhibitor of Ca2+ uptake via the so-called "slow channels" by 0.5-10 microM TFP, an inhibitor of Ca2+ transport ATPase, and by 10-90 microM TMB-8, an inhibitor of intracellular Ca2+ mobilization. t-PA-Ag secretion was inhibited by decreasing the Ca2+ concentration less than 1.2 mM. On the other hand, addition of 0.08 microM of calcium ionophore A23187 increased t-PA-Ag biosynthesis after 72 hr of incubation by 247% (P less than 0.01). These data support previous results and indicate that the synthesis of t-PA in FLF is Ca2+ dependent. Thus, it is suggested that PtdIns liposomes increase t-PA biosynthesis by affecting calcium metabolism.  相似文献   

6.
Zhang X  Zou T  Liu Y  Qi Y 《Biological chemistry》2006,387(5):595-601
Gap junction channels formed by connexin50 (Cx50) are critical for the maintenance of eye lens transparency, which is sensitive to pH and external Ca2+ concentration, but the mechanism is still not clear. In this study we performed dye uptake-leakage assays, patch clamping and confocal co-localization experiments to confirm the function of calmodulin (CaM) and Ca2+ in the Cx50 hemichannel. Below pH 7.4, lucifer yellow (LY)-preloaded Cx50-HeLa cells allow dye to leak out when washed with Ca2+-free solution or incubated in solution containing 50 microg/ml W7 (CaM inhibitor) first, then washed in solution containing 2 mM Ca2+, whereas little or no dye leakage was observed when LY-preloaded Cx50-HeLa cells were incubated in solution containing 2 mM Ca2+. Moreover, in the absence of Ca2+, polarizing pulses applied to Cx50-HeLa activated outward transmembrane currents, which were inhibited by 2 mM external Ca2+. When Cx50-HeLa cells were incubated with 2 mM Ca2+ and 50 microg/ml W7, the transmembrane currents were activated again. This indicates that Ca2+ and CaM play a gating role in Cx50 hemichannels. Either the chelation of Ca2+ or the inhibition of CaM increased the permeability of Cx50 hemichannels. The same phenomena were observed below pH 6.5. Furthermore, CaM could be localized in gap junctions formed by Cx50 below pH 6.5. Our results demonstrate that CaM and Ca2+ can cooperate in the gating control of Cx50 hemichannels.  相似文献   

7.
Cercosporin is a non-host-selective, perylenequinone toxin produced by many phytopathogenic Cercospora species. The involvement of Ca(2+)/calmodulin (CaM) signaling in cercosporin biosynthesis was investigated by using pharmacological inhibitors. The results suggest that maintaining endogenous Ca(2+) homeostasis is required for cercosporin biosynthesis in Cercospora nicotianae. The addition of excess Ca(2+) to the medium slightly increased fungal growth but resulted in a reduction in cercosporin production. The addition of Ca(2+) chelators [EGTA and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] also reduced cercosporin production. Ca(2+) channel blockers exhibited a strong inhibition of cercosporin production only at higher concentrations (>2 mM). Cercosporin production was reduced greatly by Ca(2+) ionophores (A23187 and ionomycin) and internal Ca(2+) blocker [3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester]. Phospholipase C inhibitors (lithium, U73122, and neomycin) led to a concentration-dependent inhibition of cercosporin biosynthesis. Furthermore, the addition of CaM inhibitors (compound 48/80, trifluoperazine, W-7, and chlorpromazine) also markedly reduced cercosporin production. In contrast to W-7, W-5, with less specificity for CaM, led to only minor inhibition of cercosporin production. The inhibitory effects of Ca(2+)/CaM inhibitors were partially or completely reversed by the addition of external Ca(2+). As assessed with Fluo-3/AM (a fluorescent Ca(2+) indicator), the Ca(2+) content in the cytoplasm decreased significantly when fungal cultures were grown in a medium containing Ca(2+)/CaM antagonists, confirming the specificity of those Ca(2+)/CaM antagonists in C. nicotianae. Taken together, the results suggest that Ca(2+)/CaM signal transduction may play a pivotal role in cercosporin biosynthesis in C. nicotianae.  相似文献   

8.
The intracellular free Ca concentration was measured in invertebrate neurones using single-barrelled and double-barrelled neutral-carrier microelectrodes. The electrodes were calibrated in solutions containing different Ca concentrations between 1 mM and 0.01 microM. The electrode responses were also tested at different ionic strengths and at varying Na concentrations. The electrodes responded with 25-30 mV per 10-fold change in Ca concentration between 1 mM and 1 microM and with 10-25 mV between 1 and 0.1 microM Ca. The intracellular free Ca concentration was measured to be between 0.1 and 0.7 microM in the neurones. The changes of intracellular Ca in identified voltage-clamped neurones of Aplysia californica were recorded during iontophoretic injections of Ca2+ or EGTA. The decrease of intracellular Ca following EGTA injection was correlated with the suppression of the Ca-dependent K current and with the reduction of Ca-induced inactivation of voltage-dependent Ca current. In identified neurones of the leech Hirudo medicinalis a reversible increase of intracellular Ca2+ was recorded after inhibition of the Na-K pump, either by addition of ouabain (0.5 mM) or by lowering the external K concentration (0.2 mM). This rise in intracellular Ca2+ did not occur, and was even reversed, in the absence of external Na, suggesting the existence of Na-Ca exchange across the leech neuronal membrane.  相似文献   

9.
A fura-2 microspectrofluorimeter was used to visualize and measure intracellular calcium transients in normal locomoting and experimentally treated Amoeba proteus. The results show that subcellular heterogeneities of cytosolic free calcium, [Ca2+]i, correlate in time and distribution with characteristic patterns of protoplasmic streaming and ameboid movement. In detail, calcium ions have a dual effect by regulating both the contractile activities of the actomyosin cortex and the rheological properties of the cytoplasmic matrix. A high resting [Ca2+]i of 1.5 to 2.0 x 10(-7) M in the uroid region or in retracting pseudopodia is associated with the transformation of rigid ectoplasmic gel into fluid endoplasmic sol, and a low [Ca2+]i of 10(-9) to 10(-8) M in the front region or in extending pseudopodia with the re-transformation of endoplasmic sol into ectoplasmic gel. Locally increased peripheral [Ca2+]i accumulations higher than 10(-7) M are also observed at places where the actomyosin cortex is known to generate motive force by contraction, i.e., in the intermediate region of orthotactic amebas or in large pseudopodia of polytactic cells. External application of 30 mM KCl abolishes the intracellular Ca2+ gradient such that [Ca2+]i attains a uniform distribution and a maximum concentration of 2 x 10(-7) M; as a consequence, cells can show a transient loss of their locomotor activity and polarity by undergoing spherulation and total contraction. On the other hand, high external Ca2+ concentrations in the range of 100 mM stabilize the bipolar cellular organization, enhance the movement velocity and induce the propagation of Ca2+ waves repeatedly running from the uroid to the front region. The significance of external ions for signal transmission and the control of dynamic activities as well as the origin and fate of calcium participating in the observed transients are discussed.  相似文献   

10.
Peterson BZ  DeMaria CD  Adelman JP  Yue DT 《Neuron》1999,22(3):549-558
Elevated intracellular Ca2+ triggers inactivation of L-type calcium channels, providing negative Ca2+ feedback in many cells. Ca2+ binding to the main alpha1c channel subunit has been widely proposed to initiate such Ca2+ -dependent inactivation. Here, we find that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2+ -dependent inactivation in a "dominant-negative" manner. This result demonstrates that CaM is the actual Ca2+ sensor for inactivation and suggests that CaM is constitutively tethered to the channel complex. Inactivation is likely to occur via Ca2+ -dependent interaction of tethered CaM with an IQ-like motif on the carboxyl tail of alpha1c. CaM also binds to analogous IQ regions of N-, P/Q-, and R-type calcium channels, suggesting that CaM-mediated effects may be widespread in the calcium channel family.  相似文献   

11.
The effects of various concentrations of thapsigargin, a specific inhibitor of Ca2+-ATPase in the endoplasmic reticulum (ER) membrane, on calcium homeostasis in lymphoidal T cells (Jurkat) were investigated. Preincubation of these cells suspended in nominally calcium-free medium with 0.1 microM thapsigargin resulted in a complete release of Ca2+ from intracellular calcium stores. When the medium was supplemented with 3 mM CaCl2 the cells maintained constantly elevated level of cytosolic Ca2+. However, thapsigargin applied at lower concentration produced only a partial depletion of the stores. For example, in the cells pretreated with 1 nM thapsigargin and suspended in calcium-free medium approximately 75% of the calcium content was released from the intracellular stores. The addition of 3 mM CaCl2 to such cell suspension led to a transient increase in cytosolic calcium concentration, followed by a return to a lower steady-state. This phenomenon, related to the refilling of the ER by Ca2+, allowed to estimate the half-time for the process of cell recovery after activation of store-operated calcium channels. By this approach we have found that carbonyl cyanide m-chlorophenylhydrazone, which has been documented to inhibit calcium entry into Jurkat cells, does not influence the stability of the intracellular signal involved in the activation of store-operated calcium channels.  相似文献   

12.
We report the first measurement of the free intracellular calcium level in an actively metabolising intact cerebral tissue preparation. To this end, we applied the recently developed 19F-nuclear magnetic resonance calcium chelator, 5,5'-F2-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), in superfused cerebral cortical slices to give values for the intracellular Ca2+ concentration of 350 and 480 nM, at external calcium concentrations of 1.2 and 2.4 mM, respectively. Under both conditions, the intracellular Ca2+ concentration was increased by depolarisation using a high external K+ concentration. Interleaved 31P spectra showed that the presence of the 5FBAPTA had a deleterious effect on the metabolic state of the tissue with an external Ca2+ concentration of 1.2 mM, but normal viability was maintained using 2.4 mM.  相似文献   

13.
The Ca2+-sensitive photoprotein aequorin (Mr = 20,000) was introduced into human blood platelets by incubation with 10 mM EGTA and 5 mM ATP. Platelet cytoplasmic and granule contents were retained during the loading procedure, and platelet morphology, aggregation, and secretion in response to agonists were normal after aequorin loading. Luminescence indicated an apparent resting cytoplasmic ionized calcium concentration [( Cai2+]) of 2-4 microM in media containing 1 mM Ca2+ and of 0.8-2 microM in 2-4 mM EGTA. The Ca2+ ionophore A23187 and the enzyme thrombin produced dose-related luminescent signals in both Ca2+-containing and EGTA-containing media. Peak [Cai2+] after A23187 or thrombin stimulation of aequorin-loaded platelets was 2-10 microM, while peak [Cai2+] determined using Quin 2 as the [Cai2+] indicator was at least 1 log unit lower. In platelets loaded with both aequorin and Quin 2, the aequorin signal was delayed but not reduced in amplitude. Aequorin loading of Quin 2-loaded cells had no effect on the Quin 2 signal. Ca2+ buffering by Quin 2 (intracellular concentration greater than 1 mM) is also supported by a reciprocal relationship between [Quin 2] and peak [Cai2+] stimulated by A23187 in the presence of EGTA. Parallel experiments with Quin 2 and aequorin may identify inhomogeneous [Cai2+] in platelets and give a more complete picture of platelet Ca2+ homeostasis than either indicator alone.  相似文献   

14.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

15.
The mechanism(s) of the decay of slow calcium current (ICa) in cut twitch skeletal muscle fibers of the frog were studied in voltage-clamp experiments using the double vaseline-gap technique. ICa decay followed a single exponential in 10 mM external Ca2+ and 20 mM internal EGTA solutions in all pulse protocols tested: single depolarizing pulses (activation protocol), two pulses (inactivation protocol), and during a long pulse preceded by a short prepulse (400 ms) to 80 mV (tail protocol). In single pulses the rate constant of ICa decay was approximately 0.75 s-1 at 0 mV and became faster with larger depolarizations. ICa had different amplitudes during the second pulses of the inactivation protocol (0 mV) and of the tail protocol (-20 to 40 mV) and had similar time constants of decay. The time constant of decay did not change significantly at each potential after replacing 10 mM Ca2+ with a Ca2+-buffered solution with malate. With 70 mM intracellular EGTA and 10 mM external Ca2+ solutions, ICa also decayed with a single-exponential curve, but it was about four times faster (approximately 3.5 s-1 at 0 mV pulse). In these solutions the rate constant showed a direct relationship with ICa amplitude at different potentials. With 70 mM EGTA, replacing the external 10 mM Ca2+ solution with the Ca2+-buffered solution caused the decay of ICa to become slower and to have the same relationship with membrane potential and ICa amplitude as in fibers with 20 mM EGTA internal solution. The mechanism of ICa decay depends on the intracellular EGTA concentration: (a) internal EGTA (both 20 and 70 mM) significantly reduces the voltage dependence of the inactivation process and (b) 70 mM EGTA dramatically increases the rate of tubular calcium depletion during the flow of ICa.  相似文献   

16.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM X (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E X CaM X (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01-1 microM) was 0.9 nM; the respective apparent dissociation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1-50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM X (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E X CaM) is at least 100-fold greater than the apparent dissociation constant of the E X CaM X (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

17.
We have studied the changes of the intracellular free calcium concentration ([Ca2+]i) effected by external ATP, which induces formation of inositol trisphosphate, and by the divalent cation ionophores ionomycin and A23187. Both, ATP (40 microM) and ionophores (1-80 mumol/l cells ionomycin; 20-400 mumol/l cells A23187), produced a transient rise of [Ca2+]i which reached its maximum within 15-30 s and declined near resting values (about 200 nM) within 1-3 min. When the [Ca2+]i peak surpassed 500 nM a transient cell shrinkage due to simultaneous activation of Ca2+-dependent K+ and Cl- channels was also observed. The cell response was similar in medium containing 1 mM Ca2+ and in Ca2+-free medium, suggesting that the Ca mobilized to the cytosol comes preferently from the intracellular stores. Treatment with low doses of ionophore (1 mumol/l cells for ionomycin; 20 mumol/l cells for A23187) depressed the response to a subsequent treatment, either with ionophore or with ATP. Treatment with ATP did also inhibit the subsequent response to ionophore, but in this case the inhibition was dependent on time, the stronger the shorter the interval between both treatments. This result suggests that the permeabilization of Ca stores by ATP is transient and that Ca can be taken up again by the intracellular stores. Refill was most efficient when Ca2+ was present in the incubation medium. Addition of either ATP or ionomycin (1-25 mumol/l cells) to cells incubated in medium containing 1 mM Ca2+ decreased drastically the total cell Ca content during the following 3 min of incubation. In the case of ATP the total cell levels of Ca returned to the initial values after 7-15 min, whereas in the case of the ionophore they remained decreased during the whole incubation period. These results indicate that Ca released from the intracellular stores by either ATP or ionophores is quickly extruded by active mechanisms located at the plasma membrane. They also suggest that, under the conditions studied here, with 1 mM Ca2+ outside, the Ca-mobilizing effect of ionophores is stronger in endomembranes than in the plasma membrane.  相似文献   

18.
Maintenance of intracellular calcium in Escherichia coli   总被引:16,自引:0,他引:16  
Recently a series of fluorescent calcium indicator dyes have been developed for measurement of free intracellular calcium in eukaryotic cells. Here we report the use of one such dye, fura-2, for the study of intracellular calcium levels in the prokaryote Escherichia coli. Cells of E. coli were loaded with the membrane-permeable acetoxymethyl ester of fura-2, which was cleaved intracellularly to give the free pentaacid. The concentration of free [Ca2+]i in unstarved cells was maintained at 90 +/- 10 nM, irrespective of the Ca2+ concentration in the extracellular medium. Cells of a strain lacking the H+-translocating ATPase were depleted of endogenous energy reserves and loaded with calcium. In this strain oxidative phosphorylation is uncoupled, so ATP is not produced by respiration. In starved cells [Ca2+]i varied from 0.2 to 0.7 microM when the loading Ca2+ concentration varied from 10 microM to 10 mM. Addition of glucose lowered the Ca2+ levels to 90 nM. Addition of respiratory substrates as energy donors produced cyanide-sensitive efflux. Total cell Ca2+ increased in parallel to the extracellular calcium, but the pool of free calcium did not equilibrate with the total cellular pool. These results demonstrate that 1) the pool of total Ca2+ in the bacterial cell is large and responds to extracellular calcium, 2) the free [Ca2+]i is independent of extracellular calcium, and 3) energy in the form of a proton motive force is required for maintenance of the free intracellular pool of calcium.  相似文献   

19.
Fluorescent indicator Quin-2 was used for the determination of free calcium (Ca2+in) in synaptosomes incubated in the normal medium and media where sodium is replaced by potassium or choline. At external calcium concentration of 1 mM, Ca2+in in all three media was 20-30% higher in synaptosomes of spontaneously hypertensive rats (SHR) than in control animals. At external calcium concentration of 5 mM, the increase in Ca2+in values induced by K+-depolarization in sodium- or choline-containing media was 50-80% higher in synaptosomes of SHR. These differences are suggested to be the basis for the mechanism of increased peripheral chain activity in the sympathetic nervous system in primary hypertension.  相似文献   

20.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号