首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Thr92Ala (rs225014) polymorphism in the type 2 deiodinase (DIO2) gene has been associated with insulin resistance (IR) and decreased enzyme activity in human tissues but kinetic studies failed to detect changes in the mutant enzyme, suggesting that this variant might be a marker of abnormal DIO2 expression. Thus, we aimed to investigate whether other DIO2 polymorphisms, individually or in combination with the Thr92Ala, may contribute to IR. The entire coding-region of DIO2 gene was sequenced in 12 patients with type 2 diabetes mellitus (T2DM). Potentially informative variants were evaluated in 1077 T2DM patients and 516 nondiabetic subjects. IR was evaluated using the homeostasis model assessment (HOMA-IR) index. DIO2 gene sequencing revealed no new mutation but 5 previously described single nucleotide polymorphisms (SNPs). We observed that all T2DM patients displaying high HOMA-IR index (n = 6) were homozygous for the rs225017 (T/A) polymorphism. Further analysis showed that the median fasting plasma insulin and HOMA-IR of T2DM patients carrying the T/T genotype were higher than in patients carrying the A allele (P = 0.013 and P = 0.002, respectively). These associations were magnified in the presence of the Ala92Ala genotype of the Thr92Ala polymorphism. Moreover, the rs225017 and the Thr92Ala polymorphisms were in partial linkage disequilibrium (|D′| = 0.811; r 2 = 0.365). In conclusion, the rs225017 polymorphism is associated with greater IR in T2DM and it seems to interact with the Thr92Ala polymorphism in the modulation of IR.  相似文献   

2.
3.
Conflicting results have been reported regarding the effect of the peroxisome proliferator-activated receptor-gamma-2 (PPARgamma2) Pro12Ala polymorphism, (singly or in combination with the silent C1431T polymorphism) on BMI. Gender-based dimorphism has been evidenced for genes that affect BMI, but few and conflicting data are available regarding PPARgamma2. We sought to investigate whether the Pro12Ala interacts with gender in modulating BMI in 566 nondiabetic unrelated white subjects (men:women = 211:355, age 36.59 +/- 11.85; BMI 25.36 +/- 4.53). In the whole study population, BMI, fasting glucose and insulin levels, and lipid profile were similar in Ala12 carriers (i.e., XA) and Pro/Pro homozygous subjects. Among the men, but not among the women, X/Ala individuals showed higher BMI (25.9 +/- 3.6 vs. 28.2 +/- 4.9, P = 0.006) and risk of obesity (odds ratio = 2.85, 95% confidence interval = 1.07-7.62). A significant gene-gender interaction in modulating BMI was observed (P = 0.039). Among the men, but not among the women, those carrying Ala-T haplotype (i.e., containing both Ala12 and T1431 variants) showed the highest BMI (haplo-score = 3.72, P = 0.0014). Our data indicate that in whites from Italy the PPARgamma2 Pro12Ala polymorphism interacts with gender in modulating BMI, thereby replicating some, but not all, earlier data obtained in different populations. Whether the PPARgamma2-gender interaction is a general phenomenon across different populations, is still an open question, the answer to which requires additional, specifically designed, studies.  相似文献   

4.
The association between the peroxisome proliferator-activated receptor (PPAR)gamma2 Pro12Ala polymorphism and insulin resistance is reported to depend on low birth weight. Low birth weight itself has been linked to type 2 diabetes and cardiovascular diseases in adulthood. We assessed whether the PPARgamma2 Pro12Ala polymorphism determines body size at birth and whether metabolic differences between the genotypes are already detectable in the newborn. This study was conducted at the obstetrics department of the Charité, Berlin, Germany. One thousand nine hundred thirty white woman/child pairs were consecutively included and genotyped. The newborn's weight, length, and head circumference were measured. Total glycated hemoglobin in blood served as a surrogate of fetal insulin resistance and glucose use. We found that neither the fetal nor the maternal Pro12Ala genotype determined body size or total glycated hemoglobin at birth. The results suggest that the PPARgamma2 Pro12Ala polymorphism is not relevant for intrauterine growth. Previously reported effects of PPARgamma2 Pro12Ala on insulin resistance seem to arise later in life.  相似文献   

5.
A major function of abdominal adipose in the newborn is nonshivering thermogenesis. Uncoupling protein (UCP) UCP1 and UCP2 play major roles in thermogenesis. The present study tested the hypothesis that long-term hypoxia (LTH) modulates expression of UCP1 and UCP2, and key genes regulating expression of these genes in the late-gestation ovine fetus. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dG); perirenal adipose tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dG. Quantitative real-time PCR was used to analyze mRNA for UCP1, UCP2, 11beta hydroxysteroid dehydrogenase type 1 (HSD11B1) and 2 (HSD11B2), glucocorticoid receptor (GR), beta3 adrenergic receptor (beta3AR), deiodinase type 1 (DIO1) and DIO2, peroxisome proliferator activated receptor (PPAR) alpha and gamma and PPARgamma coactivator 1 (PGC1alpha). Concentrations of mRNA for UCP1, HSD11B1, PPARgamma, PGC1, DIO1, and DIO2 were significantly higher in perirenal adipose of LTH compared with control fetuses, while mRNA for HSD11B2, GR, or PPARalpha in perirenal adipose did not differ between control and LTH fetuses. The increased expression of UCP1 is likely an adaptive response to LTH, assuring adequate thermogenesis in the event of birth under oxygen-limiting conditions. Because both glucocorticoids and thyroid hormone regulate UCP1 expression, the increase in HSD11B1, DIO1, and DIO2 implicate increased adipose capacity for local synthesis of these hormones. PPARgamma and its coactivator may provide an underlying mechanism via which LTH alters development of the fetal adipocyte. These findings have important implications regarding fetal/neonatal adipose tissue function in response to LTH.  相似文献   

6.
Oxidative stress plays an important role in the pathogenesis of insulin resistance and type 2 diabetes mellitus and in diabetic vascular complications. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, improve insulin sensitivity and are currently used for the treatment of type 2 diabetes mellitus. Here, we show that TZD prevents oxidative stress-induced insulin resistance in human skeletal muscle cells, as indicated by the increase in insulin-stimulated glucose uptake and insulin signaling. Importantly, TZD-mediated activation of PPARgamma induces gene expression of glutathione peroxidase 3 (GPx3), which reduces extracellular H(2)O(2) levels causing insulin resistance in skeletal muscle cells. Inhibition of GPx3 expression prevents the antioxidant effects of TZDs on insulin action in oxidative stress-induced insulin-resistant cells, suggesting that GPx3 is required for the regulation of PPARgamma-mediated antioxidant effects. Furthermore, reduced plasma GPx3 levels were found in patients with type 2 diabetes mellitus and in db/db/DIO mice. Collectively, these results suggest that the antioxidant effect of PPARgamma is exclusively mediated by GPx3 and further imply that GPx3 may be a therapeutic target for insulin resistance and diabetes mellitus.  相似文献   

7.
8.
OBJECTIVE: To analyze the relationship between the peroxisome proliferator-activated receptor-gamma (PPARgamma2) Pro12Ala variant and type-2 diabetes mellitus and its correlation with some cytokine determinants of insulin resistance such as tumor necrosis factor (TNF)-alpha and leptin. METHODS: The PPARgamma2 Pro12Ala genetic polymorphism was studied in 167 type-2 diabetic patients and 63 healthy controls. Serum leptin and plasma-soluble TNF-R2 were measured. RESULTS: Women carriers of the Pro12Ala mutation exhibited higher leptin levels than women non-carriers (median 31.4 vs. 17.5 ng/ml; p < 0.005). sTNF-R2 levels did not show differences between the two genotypes. Analysis by the multiple linear regression model of leptin-body mass index controlled by the PPARgamma2 genotype showed that leptin levels were determined by the Pro12Ala mutation in type-2 diabetic women but not in men. CONCLUSIONS: PPARgamma2 seems to be implicated in leptin homeostasis in type-2 diabetic women.  相似文献   

9.
Aerobic endurance training improves insulin sensitivity, and is of great importance in the prevention and treatment of type 2 diabetes. The improvement in insulin sensitivity and cardiovascular function through exercise is highly variable among individuals, and is probably partly determined by genetic components. This study evaluated the peroxisome proliferation-activated receptor-gamma2 ( PPAR-gamma2) Pro12Ala polymorphism and the angiotensin converting enzyme ( ACE) I/D polymorphism with respect to any potential influence that these highly prevalent polymorphisms may impose on changes in insulin sensitivity and maximal aerobic capacity induced by exercise. Seventy-nine healthy first-degree relatives of type 2 diabetic patients were compared to a control group consisting of 54 subjects without any family history of type 2 diabetes. All subjects had a normal OGTT. The groups were comparable with respect to age (34 +/- 7 vs. 33 +/- 7 years), gender ((m/f) 43/36 vs. 30/24) and BMI (25.7 +/- 2.6 vs. 25.3 +/- 2.5 kg/m (2)); p (all) = NS. Furthermore, a subgroup of 29 offspring and 17 control subjects were engaged in a standardized training program lasting ten weeks. Insulin sensitivity (hyperinsulinemic euglycemic clamp technique) and VO (2)max (exhaustive exercise test) was assessed before and after the training period. We will demonstrate the allelic frequency of the Ala-allele of the Pro12Ala polymorphism to be lower in offspring to type 2 diabetic patients (13.3 %) compared to control subjects (21.3 %); p < 0.05. In offspring only, the Pro12Ala polymorphism of the PPAR-gamma2 gene appeared to enhance weight changes brought about by exercise (Deltaweight = - 0.3 +/- 1.4 kg vs. - 1.8 +/- 1.8 kg; p < 0.05; (Pro/Pro vs. Pro/Ala + Ala/Ala) - suggesting possible gene-environment or gene-gene interactions. The ACE I/D polymorphism was not of significant importance in determining the capability of responding to exercise in terms of improvement in insulin sensitivity or maximal aerobic capacity.  相似文献   

10.
11.
Type 2 deiodinase (D2) converts T4 into its active metabolite T3, an essential step in thyroid metabolism. A Thr92Ala polymorphism in the gene encoding D2 has been inconsistently associated with insulin resistance (IR). Recently, it was reported that the D2 Thr92Ala (rs225014) and the peroxisome proliferator-activated receptor (PPAR) γ2 Pro12Ala (rs1801282) polymorphisms interact in the modulation of metabolic syndrome in nondiabetic subjects. Here, we investigated the effect of both polymorphisms, isolated or in combination, on IR in patients with type 2 diabetes mellitus (DM2). The D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms were genotyped in 721 DM2 patients. IR was evaluated using the homeostasis model assessment-IR (HOMA(IR)) index in a subgroup of 246 DM2 subjects. The frequencies of D2 Ala92 and PPARγ2 Ala12 variants were 0.390 and 0.074, respectively. Patients carrying D2 Ala/Ala genotype had a higher fasting plasma insulin and HOMA(IR) index as compared to patients carrying Thr/Ala or Thr/Thr genotypes (P = 0.022 and P = 0.001, respectively). A significant synergistic effect was observed between D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms on HOMA(IR) index, with carriers of both D2 Ala/Ala genotype and PPARγ2 Ala12 allele showing the highest HOMA(IR) values, after adjusting for age, gender, BMI, and use of medication for DM2 (P = 0.010). In conclusion, DM2 patients harboring both D2 Ala/Ala genotype and PPARγ2 Ala12 allele seem to present more severe IR than those with other D2/PPARγ2 genotype combinations. These findings suggest that these polymorphisms interact in the IR modulation, which may constitute a potential therapeutic target.  相似文献   

12.
13.
Gestational diabetes mellitus (GDM) is associated with elevated postprandial free fatty acids (FFA) and insulin resistance; however, little is known about the cellular mechanisms underlying insulin resistance to suppress lipolysis during gestation. We evaluated the longitudinal changes in insulin suppression of FFA before pregnancy and in early (12-14 wk) and late (34-36 wk) gestation in obese subjects with normal glucose tolerance and in obese GDM subjects. Abdominal subcutaneous adipose tissue biopsies were also obtained during cesarean delivery from normal obese pregnant (Preg-Con), GDM, and nonpregnant obese control (Non-Preg-Con) subjects during gynecological surgery. GDM subjects had higher basal plasma FFA before pregnancy (P = 0.055). Insulin's ability to suppress FFA levels declined from early to late gestation in both GDM and Preg-Con subjects and was significantly less in GDM subjects compared with Preg-Con subjects over time (P = 0.025). Adipose tissue insulin receptor substrate (IRS)-1 protein levels were 43% lower (P = 0.02) and p85alpha subunit of phosphatidylinositol 3-kinase was twofold higher (P = 0.03) in GDM compared with Preg-Con subjects. The levels of peroxisome proliferator-activated receptor-gamma (PPARgamma) mRNA and protein were lower by 38% in Preg-Con (P = 0.006) and by 48% in GDM subjects (P = 0.005) compared with Non-Preg controls. Lipoprotein lipase and fatty acid-binding protein-2 mRNA levels were 73 and 52% lower in GDM compared with Preg-Con subjects (P < 0.002). Thus GDM women have decreased IRS-1, which may contribute to reduced insulin suppression of lipolysis with advancing gestation. Decreased PPARgamma and its target genes may be part of the molecular mechanism to accelerate fat catabolism to meet fetal nutrient demand in late gestation.  相似文献   

14.
Obesity is associated with the development of leptin resistance. However, the effects of leptin resistance on leptin-regulated metabolic processes and the biochemical defects that cause leptin resistance are poorly understood. We have addressed in rats the effect of dietinduced obesity (DIO), a situation of elevated tissue lipid levels, on the well described lipid-lowering effect of leptin in liver, an action that is proposed to be important for the prevention of tissue lipotoxicity and insulin resistance. In addition, we have addressed the role of phosphatidylinositol 3-kinase (PI 3-kinase) in mediating the acute effects of leptin on hepatic lipid levels in lean and DIO animals. A 90-min leptin ( approximately 10 ng/ml) perfusion of isolated livers from lean animals decreased triglyceride levels by 42 +/- 5% (p = 0.006). However, leptin concentrations ranging from approximately 10 to approximately 90 ng/ml had no effect on triglyceride levels in livers from DIO animals. The acute lipid-lowering effect of leptin on livers from lean animals was mediated by a PI 3-kinase-dependent mechanism, because wortmannin and LY294002, the PI 3-kinase inhibitors, blocked the effects of leptin on hepatic triglyceride levels and leptin increased liver PI 3-kinase activity by 183 +/- 6% (p = 0.003) and insulin receptor substrate 1 tyrosine phosphorylation by 185 +/- 30% (p = 0.02) in the absence of PI 3-kinase inhibitors. Contrary to the effects of leptin in lean livers, leptin did not activate PI 3-kinase in livers from DIO rats. These data present evidence for a role for 1). leptin resistance in contributing to the excessive accumulation of tissue lipid in obesity, 2). PI 3-kinase in mediating the acute lipid-lowering effects of leptin in liver, and 3). defective leptin activation of PI 3-kinase as a novel mechanism of leptin resistance.  相似文献   

15.
We investigated the association of C1431T and Pro12Ala polymorphisms at the peroxisome proliferator-activated receptor gamma (PPARgamma) locus with plasma lipids and insulin resistance-related variables, according to diabetes status, in a large and representative Asian population from Singapore consisting of 2,730 Chinese, 740 Malays, and 568 Indians. Moreover, we estimated the diabetes risk and examined gene-nutrient interactions between these variants and the ratio of polyunsaturated fatty acid to saturated fat (SFA) in determining body mass index (BMI) and fasting insulin. We found differential effects of these gene variants. The Pro12Ala polymorphism was more associated with plasma lipids and fasting glucose concentrations, whereas the C1431T polymorphism was related to the risk of diabetes. Carriers of the 12Ala allele had higher HDL-cholesterol than did Pro12Pro homozygotes (P < 0.05), and the effect of the 12Ala allele on fasting glucose was modified by diabetes status (P < 0.001). After controlling for confounders, carriers of the T allele had decreased risk of diabetes compared with CC homozygotes [odds ratio (OR) 0.73, 95% confidence interval (CI) 0.58-0.93; P = 0.011]; this effect was stronger in Indians (OR 0.38, 95% CI 0.15-0.92; P = 0.032). For both polymorphisms, normal subjects carrying the less prevalent allele had higher BMI (P < 0.05). The PUFA/SFA did not modify the effect of these polymorphisms on BMI or insulin.  相似文献   

16.
The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma2 (PPARgamma2) gene is associated with reduced type 2 diabetes risk and increased insulin sensitivity. It is possible that the oxidative shift from lipid to glucose as a fuel is more efficient in Ala allele carriers. To test this hypothesis, we examined carbohydrate and lipid oxidation by indirect calorimetry in lean, glucose tolerant subjects with (X/Ala, n = 25) and without the Pro12Ala polymorphism (Pro/Pro, n = 73) basally and after insulin stimulation during a 2-hour eugylcaemic hyperinsulinaemic clamp. Insulin sensitivity was non-significantly greater in X/Ala (0.13 +/- 0.01 micromol/kg/min/pM) than in Pro/Pro (0.12 +/- 0.01 micromol/kg/min/pM, p = 0.27). Basally, there were no lipid nor carbohydrate oxidation differences between the groups. Interestingly, the decrease in lipid oxidation during insulin stimulation was significantly greater in male X/Ala (- 0.51 +/- 0.06 mg/kg/min) than in male Pro/Pro (- 0.35 +/- 0.04 mg/kg/min, p = 0.03). No difference was observed in females. Analogously, the change in carbohydrate oxidation in male X/Ala (1.34 +/- 0.2 mg/kg/min) was significantly greater than in male Pro/Pro (1.03 +/- 0.12 mg/kg/min, p = 0.05). The respiratory quotient increased more, but not significantly more, in male X/Ala (0.11 +/- 0.01) than in male Pro/Pro subjects (0.08 +/- 0.01, p = 0.08) but similarly in females. These results indicate that the mechanism by which the Ala allele improves insulin sensitivity might involve enhanced suppression of lipid oxidation permitting more efficient (predominantly non-oxidative) glucose disposal. It is unclear why this could be demonstrated only in males, although gender differences in substrate oxidation are well documented.  相似文献   

17.
alpha1-Acid glycoprotein (alpha1-AGP) is an acute phase protein that can potentiate cytokine secretion by mononuclear cells and may induce thrombosis by stabilizing the inhibitory activity of plasminogen activator inhibitor-1. Thus, alpha1-AGP may promote pathobiologies associated with type 2 diabetes mellitus (T2DM) including insulin resistance and cardiovascular disease. Here, we demonstrate that antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists inhibited expression of 3T3-L1 adipocyte alpha1-AGP in a concentration- and time-dependent manner via an apparent PPARgamma-mediated mechanism. As a result, synthesis and secretion of the glycoprotein was reduced. While PPARgamma agonist regulation of genes with functional peroxisome proliferator response elements in their promoter such as phosphoenolpyruvate carboxykinase were unaffected when cellular protein synthesis was inhibited, downregulation of alpha1-AGP mRNA was ablated thereby supporting the proposition that PPARgamma activation inhibits alpha1-AGP expression indirectly. These results suggest a potential novel adipocytic mechanism by which PPARgamma agonists may ameliorate T2DM-associated insulin resistance and cardiovascular disease.  相似文献   

18.
Regulation of p85a phosphatidylinositol-3-kinase (p85alphaPI-3K) expression by peroxisome proliferator-activated receptor (PPAR) activators was studied in human skeletal muscle cells. Activation of PPARgamma or PPARbeta did not modify the expression of p85alphaPI-3K. In contrast, activation of PPARalpha increased p85alphaPI-3K mRNA. This effect was potentiated by 9-cis-retinoic acid, an activator of RXR. Up-regulation of p85alphaPI-3K gene expression resulted in a rise in p85alphaPI-3K protein level and in an increase in insulin-induced PI3-kinase activity. According to the role of p85alphaPI-3K in insulin action, these results suggest that drugs with dual action on both PPARgamma and PPARalpha can be of interest for the treatment of insulin resistance.  相似文献   

19.
Conflicting results have been reported regarding whether the PPARgamma2 Pro12Ala polymorphism plays a role in the risk of type 2 diabetes (T2D), suggesting genetic heterogeneity. To investigate this issue, a meta-analysis of 41 published and 2 unpublished studies (a total of 42,910 subjects) was conducted. Ala12 carriers had a 19% T2D risk reduction, but this association was highly heterogeneous (p = 0.005). A great proportion (48%) of heterogeneity was explained by the controls' BMI, with risk reduction being greater when BMI was lower. Risk reduction of Ala12 carriers in Asia (35%) was higher than in Europe (15%, p = 0.02) and tended to be higher than in North America (18%, p = 0.10). Difference between Asians and Europeans was no longer significant (p = 0.15) after adjusting for the controls' BMI. Studies from Europe were still heterogeneous (p = 0.02) with risk reduction in Ala12 carriers being progressively smaller (test for trend in the odds ratios, p = 0.02) from Northern (26% reduction, p < 0.0001) to Central (10%, p = 0.04) and Southern (0%, p = 0.94) Europe. In conclusion, in our meta-analysis, the reduced risk of T2D in Ala12 carriers is not homogeneous. It is greater in Asia than in Europe and, among Europeans, it is higher in Northern Europe, barely significant in Central Europe, and nonexistent in Southern Europe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号