首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
铝胁迫能影响根尖生长素的运输,这与生长素运输载体密切相关,PIN2作为根尖生长素的运输蛋白,其独特的组织定位可能诱导PIN2蛋白参与了铝调节生长素的运输过程。该研究以拟南芥PIN2缺失突变体( pin2)、PIN2□∷□GFP融合体及其野生型( WT)为材料,应用激光扫描共聚焦显微技术,研究铝处理对拟南芥根尖生长素运输蛋白PIN2的表达活性、蛋白在组织及亚细胞水平分布及其对铝内置化作用的影响。结果表明:短期铝处理或低铝浓度能明显增加拟南芥根尖细胞PIN2蛋白表达活性,而长期铝处理或高铝浓度抑制其表达活性;以100μmol?L-1 AlCl3处理4 h的蛋白表达活性最高。蛋白印迹反应发现,铝处理促进PIN2蛋白在细胞膜上累积,减少胞内囊泡中PIN2蛋白的含量;囊泡运输抑制剂( BFA)能抑制铝诱导PIN2蛋白的分配。铝胁迫增加拟南芥根尖细胞H2 O2累积,pin2的H2 O2累积量大于WT,而相对根长小于WT。 Morin染色结果显示,pin2的铝内置化显著小于WT。上述研究表明,PIN2蛋白在100μmol?L-1 AlCl3处理条件下活性最高,细胞膜累积程度加强,铝内置化能力增强,从而调节根系的生长发育。该研究结果进一步为铝抑制生长素的运输机制提供了理论基础。  相似文献   

2.
铝胁迫能影响根尖生长素的运输,这与生长素运输载体密切相关,PIN2作为根尖生长素的运输蛋白,其独特的组织定位可能诱导PIN2蛋白参与了铝调节生长素的运输过程。该研究以拟南芥PIN2缺失突变体(pin2)、PIN2□∷□GFP融合体及其野生型(WT)为材料,应用激光扫描共聚焦显微技术,研究铝处理对拟南芥根尖生长素运输蛋白PIN2的表达活性、蛋白在组织及亚细胞水平分布及其对铝内置化作用的影响。结果表明:短期铝处理或低铝浓度能明显增加拟南芥根尖细胞PIN2蛋白表达活性,而长期铝处理或高铝浓度抑制其表达活性;以100μmol·L-1Al Cl3处理4 h的蛋白表达活性最高。蛋白印迹反应发现,铝处理促进PIN2蛋白在细胞膜上累积,减少胞内囊泡中PIN2蛋白的含量;囊泡运输抑制剂(BFA)能抑制铝诱导PIN2蛋白的分配。铝胁迫增加拟南芥根尖细胞H2O2累积,pin2的H2O2累积量大于WT,而相对根长小于WT。Morin染色结果显示,pin2的铝内置化显著小于WT。上述研究表明,PIN2蛋白在100μmol·L-1Al Cl3处理条件下活性最高,细胞膜累积程度加强,铝内置化能力增强,从而调节根系的生长发育。该研究结果进一步为铝抑制生长素的运输机制提供了理论基础。  相似文献   

3.
植物的向性,即植物对光或重力等环境刺激信号产生的定向生长反应。在向重力性反应中,植物器官将重力感知为定向环境信号,来控制其器官的生长方向以促进生存。植物激素生长素及其极性运输在植物向重力反应中起着决定性的调控作用。质膜定位的生长素输出蛋白PIN-FORMED(PIN)通过动态的亚细胞极性定位,改变生长素运输的方向以响应环境刺激,由此植物器官间建立的生长素浓度梯度是细胞差异化伸长和器官弯曲的基础,来调控植物的形态建成和生长发育过程。本文主要讨论发生在植物重力感受细胞内早期重力感知和信号转导机制的最新研究进展、PIN介导的生长素极性运输、PIN的极性定位以及质膜蛋白丰度的调控机制等。  相似文献   

4.
PIN2是根尖生长素运输的重要蛋白,PIN2基因的差异表达是否影响植物耐铝性并不清楚。本文以不同At PIN2表达水平的拟南芥为材料,研究了At PIN2差异表达对拟南芥耐铝性的影响。结果表明,铝处理明显增强拟南芥根尖0~5 mm区域At PIN2基因的转录表达,与对照相比,其表达量增加了80%。铝能诱导PIN2蛋白在根尖细胞膜水平方向累积,并且呈束状分布。通过分析不同At PIN2表达材料的耐铝性,发现在铝处理条件下,PIN2缺失突变体(pin2-ko)的根系伸长速率显著小于PIN2超表达(PIN2-OX)和野生型材料(Col);并且,pin2-ko累积较多的活性氧;pin2-ko的SOD、CAT和APX活性以及GSH含量均显著低于PIN2-OX。上述结果表明,At PIN2表达差异影响拟南芥耐铝性,敲除At PIN2导致其对铝毒更敏感,其机理可能是At PIN2通过影响根尖抗氧化能力参与拟南芥耐铝响应。  相似文献   

5.
生长素在调节植物生长和抗重金属胁迫中具有重要作用。重金属胁迫下植物为维持自身生长,必须维持生长素的内稳态和自身代谢平衡。生长素的内稳态受到生物合成、生长素结合以及水解、代谢失活等生理活动的严格控制。一些涉及生长素合成与分解的相关酶系和基因已被识别或克隆,然而重金属胁迫下与生长素合成与分解有关基因的上调或下调以及相关酶系的激活或失活却研究尚少。揭示植物遭受重金属胁迫后生长素合成与分解变化的机理,可为植物修复实践中合理使用植物生长调节剂提供理论依据。本文以生长素的主要代表物吲哚乙酸(IAA)为例,讨论重金属胁迫下,植物体内IAA合成、分解机制及其赋存形态等方面的研究进展,并从重金属胁迫下植物IAA合成途径的相对重要性、IAA形态变化和作用以及激素间的交互作用等方面探讨了该领域的研究方向。  相似文献   

6.
植物铝胁迫响应基因的研究进展   总被引:1,自引:0,他引:1  
铝毒是酸性土壤中植物生长和作物生产的主要限制因子.近年来的很多研究应用差异显示PCR、抑制差减cDNA文库和DNA微正列等技术,在一些铝耐受型和敏感型植物中鉴定了很多铝胁迫响应基因.本研究通过参阅国内外有关报道和结合本实验室的研究成果,从铝诱导的通道蛋白、代谢相关、胁迫和细胞死亡以及信号转导相关基因4个方面的研究进展进行了综述.  相似文献   

7.
植物荫蔽胁迫的激素信号响应   总被引:1,自引:0,他引:1  
植物的生长发育与光信号密切相关, 外界光强、光质的变化会改变植物的生长发育状态。在自然或人工生态系统中, 植株个体的光环境往往会被其周围植物所影响, 导致荫蔽胁迫, 其主要表现为光合有效辐射以及红光与远红光比值(R:FR)降低。荫蔽胁迫对植物生长发育的多个时期均有影响, 如抑制种子萌发、促进幼苗下胚轴伸长及促进植物花期提前等, 这对农业生产不利, 会导致作物产量以及品质的降低。植物激素是调控植物生长发育的关键内源因子。大量研究表明, 生长素(IAA)、赤霉素(GA)及油菜素甾醇(BR)等植物激素均参与介导植物的荫蔽胁迫响应。当植物处于荫蔽胁迫时, 光信号的改变会影响植物激素的合成及信号转导。不同植物激素对荫蔽胁迫的响应各不相同, 但其信号通路之间却存在互作关系, 从而形成复杂的网络状调控路径。该文总结了几种主要植物激素(生长素、赤霉素、油菜素甾醇及乙烯)响应荫蔽胁迫的机理, 重点论述了荫蔽胁迫对植物激素合成及信号通路的影响, 以及植物激素调控荫蔽胁迫下植物生长的分子机理, 并对未来潜在的研究热点进行了分析。  相似文献   

8.
以拟南芥野生型和相关转基因株系为材料,设置0、50、100、200和400μg/mL头孢霉素处理,考察头孢霉素对主根伸长生长、根尖分生组织活性、生长素分布运输以及干细胞活性的影响,探究头孢霉素对拟南芥主根生长发育的毒性作用机制。结果显示:(1)头孢霉素能以浓度依赖的方式抑制拟南芥主根的生长,并抑制分生组织长度和CYCB1;1基因的表达,说明它能抑制根尖分生组织活性。(2)头孢霉素能降低根尖生长素报告基因DR5∷GUS、DR5∷GFP和生长素极性运输蛋白PIN1、PIN2、PIN3、PIN7和AUX1的表达,说明它能抑制根尖生长素的分布和极性运输。(3)头孢霉素能下调根尖静止中心标记系WOX5∷GFP、QC25和QC46的表达,以及SHR和SCR蛋白的表达,说明它能抑制根尖干细胞活性。研究表明,头孢霉素能通过抑制根尖分生组织活性、生长素的分布和极性运输以及干细胞活性,从而调节拟南芥主根的生长发育。  相似文献   

9.
ROP2(Rho-related GTPases from plant)为植物中特有的小G蛋白Rho家族的成员,参与植物细胞信号转导过程。为了探讨其在生长素信号响应过程中对细胞膜泡运输的调控作用,构建了拟南芥ROP2过表达(OX-ROP2)、组成激活型表达(CA-rop2)和显性失活型表达(DN-rop2)的载体,分别转化到膜泡标记和生长素结合蛋白ABP1(auxin binding protein 1)调控表达的烟草BY2细胞系,结合生长素处理开展了ROP2对细胞生长素作用下膜泡运输的调控。在生长素IAA作用下,ROP2的过表达和组成激活型表达都能明显促进细胞的膜泡外排运输,而ROP2的显性失活型表达则抑制细胞膜泡外排运输。如果同时诱导细胞中ABP1过表达,能显著增强ROP2对膜泡外排运输的促进作用,而ABP1受干扰抑制表达时,ROP2的过表达及组成型激活表达对膜泡外排的促进作用都受到明显抑制。IAA处理细胞2 min时就可以观察到细胞对IAA信号响应的膜泡运输明显变化,此时细胞核向内膜系统、内膜系统向细胞质膜之间的膜泡外排运输逐渐增强,外排运输的方向趋向于生长素高浓度方向更活跃。该研究说明,植物ROP2参与生长素快速响应的信号转导途径,能促进膜泡朝向生长素浓度较高的一侧外排运输。  相似文献   

10.
扩展蛋白是一类具有细胞壁松弛功能的蛋白质,它不仅能调节细胞壁的松弛和伸张,而且在调控植物的生长发育以及逆境响应过程中具有重要的作用。扩展蛋白作为激素调节因子能够对多种激素产生响应,从而调节植物的生长发育:扩展蛋白参与了乙烯调节的植物生长发育过程;改变植物内源的生长素水平或用外源生长素进行处理同样影响扩展蛋白基因的表达;扩展蛋白可能参与赤霉素和脱落酸调节的生长发育和逆境响应过程;此外,施加外源的茉莉酸甲酯、油菜素内酯和细胞分裂素也会影响扩展蛋白基因的表达水平。本文综述了扩展蛋白在激素介导的植物生长发育方面的最新研究进展,以期为研究者更直观便捷的了解该方面现状提供依据。  相似文献   

11.
The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification–related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.  相似文献   

12.
Auxin acts synergistically with cytokinin to control the shoot stem‐cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress‐induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al‐induced auxin signaling. Al stress triggers a local cytokinin response in the root‐apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up‐regulated specifically in the root‐apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum‐induced root growth inhibition in Arabidopsis.  相似文献   

13.
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.  相似文献   

14.
The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H2O2 generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H2O2. Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body.  相似文献   

15.
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild‐type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss‐of‐function mutations, or in a dominant (gain‐of‐function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.  相似文献   

16.
Elevated concentrations of soluble aluminium (Al) reduce root growth in acid soils, but much remains unknown regarding the toxicity of this Al as well as the mechanisms by which plants respond. This review examines changes in phytohormones in Al‐stressed plants. Al often results in a rapid ‘burst’ of ethylene in root apical tissues within 15–30 min, with this regulating an increase in auxin. This production of ethylene and auxin seems to be a component of a plant‐response to toxic Al, resulting in cell wall modification or regulation of organic acid release. There is also evidence of a role of auxin in the expression of Al toxicity itself, with Al decreasing basipetal transport of auxin, thereby potentially decreasing wall loosening as required for elongation. Increasingly, changes in abscisic acid in root apices also seem to be involved in plant‐responses to toxic Al. Changes in cytokinins, gibberellins and jasmonates following exposure to Al are also examined, although little information is available. Finally, although not a phytohormone, concentrations of nitric oxide change rapidly in Al‐exposed tissues. The information presented in this review will assist in focusing future research efforts in examining the importance of phytohormones in plant tissues exposed to toxic levels of Al.  相似文献   

17.
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.  相似文献   

18.
During plant growth and development, root tip performs multifarious functions integrating diverse external and internal stimuli to regulate root elongation and architecture. It is believed that a signal originating from root tip inhibits lateral root formation (LRF). The excision of root tip induced LRF in tomato seedlings associated with accumulation of auxin in pericycle founder cells. The excision of cotyledons slightly reduced LRF, whereas severing shoot from root completely abolished LRF. Exogenous ethylene application did not alter LRF. The response was modulated by light with higher LRF in seedlings exposed to light. Our results indicate that light plays a role in LRF in seedlings by likely modulating shoot derived auxin.  相似文献   

19.
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号