首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.  相似文献   

2.
The native auxin, indole-3-acetic acid (IAA), is a major regulator of plant growth and development. Its nonuniform distribution between cells and tissues underlies the spatiotemporal coordination of many developmental events and responses to environmental stimuli. The regulation of auxin gradients and the formation of auxin maxima/minima most likely involve the regulation of both metabolic and transport processes. In this article, we have demonstrated that 2-oxindole-3-acetic acid (oxIAA) is a major primary IAA catabolite formed in Arabidopsis thaliana root tissues. OxIAA had little biological activity and was formed rapidly and irreversibly in response to increases in auxin levels. We further showed that there is cell type–specific regulation of oxIAA levels in the Arabidopsis root apex. We propose that oxIAA is an important element in the regulation of output from auxin gradients and, therefore, in the regulation of auxin homeostasis and response mechanisms.  相似文献   

3.
4.
5.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.Due to agricultural practices and climate change, soil salinity has become a serious factor limiting the productivity and quality of agricultural crops (Zhu, 2007). Worldwide, high salinity in the soil damages approximately 20% of total irrigated lands and takes 1.5 million ha out of production each year (Munns and Tester, 2008). In general, high salinity affects plant growth and development by reducing plant water potential, altering nutrient uptake, and increasing the accumulation of toxic ions (Hasegawa et al., 2000; Munns, 2002; Zhang and Shi, 2013). Together, these effects severely reduce plant growth and survival.Because the root is the first organ to sense high salinity, salt stress plays a direct, important role in modulating root system architecture (Wang et al., 2009). For instance, salt stress negatively regulates root hair formation and gravitropism (Sun et al., 2008; Wang et al., 2008). The role of salt in lateral root formation depends on the NaCl concentration. While high NaCl levels inhibit lateral root formation, lower NaCl levels stimulate lateral root formation in an auxin-dependent manner (Zolla et al., 2010; Ji et al., 2013). The root meristem plays an essential role in sustaining root growth (Perilli et al., 2012). Salt stress inhibits primary root elongation by suppressing root meristem activity (West et al., 2004). However, how this inhibition occurs remains largely unclear.Plant hormones are important intermediary signaling compounds that function downstream of environmental stimuli. Among plant hormones, indole-3-acetic acid (IAA) is thought to play a fundamental role in root system architecture by regulating cell division, expansion, and differentiation. In Arabidopsis (Arabidopsis thaliana) root tips, a distal auxin maximum is formed and maintained by polar auxin transport (PAT), which determines the orientation and extent of cell division in the root meristem as well as root pattern formation (Sabatini et al., 1999). PINFORMED (PIN) proteins, which are components of the auxin efflux machinery, regulate primary root elongation and root meristem size (Blilou et al., 2005; Dello Ioio et al., 2008; Yuan et al., 2013, 2014). The auxin signal transduction pathway is activated by direct binding of auxin to its receptor protein, TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB), promoting the degradation of Aux/IAA proteins, releasing auxin response factors (ARFs), and activating the expression of auxin-responsive genes (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Aux/IAA proteins are short-lived, nuclear-localized proteins that play key roles in auxin signal activation and root growth modulation (Rouse et al., 1998). Other hormones and stresses often regulate auxin signaling by affecting Aux/IAA protein stability (Lim and Kunkel, 2004; Nemhauser et al., 2004; Wang et al., 2007; Kushwah and Laxmi, 2014).Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants (He et al., 2004; Fernández-Marcos et al., 2011; Shi et al., 2012), including important roles in the regulation of root growth and development. NO functions downstream of auxin during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002). Exogenous auxin-induced NO biosynthesis is associated with nitrate reductase activity during lateral root formation, and NO is necessary for auxin-induced lateral root and root hair development (Pagnussat et al., 2002; Lombardo et al., 2006). Pharmacological and genetic analyses in Arabidopsis indicate that NO suppresses primary root growth and root meristem activity (Fernández-Marcos et al., 2011). Additionally, both exogenous application of the NO donor sodium nitroprusside (SNP) and overaccumulation of NO in the mutant chlorophyll a/b binding protein underexpressed1 (cue1)/nitric oxide overproducer1 (nox1) result in reduced PIN1 expression and auxin accumulation in root tips. The auxin receptors protein TIR1 is S-nitrosylated by NO, suggesting that this protein is a direct target of NO in the regulation of root development (Terrile et al., 2012).Because NO is a free radical, NO levels are dynamically regulated by endogenous and environmental cues. Many phytohormones, including abscisic acid, auxin, cytokinin, salicylic acid, jasmonic acid, and ethylene, induce NO biosynthesis (Zottini et al., 2007; Kolbert et al., 2008; Tun et al., 2008; García et al., 2011). In addition, many abiotic and biotic stresses or stimuli, such as cold, heat, salt, drought, heavy metals, and pathogens/elicitors, also stimulate NO biosynthesis (Zhao et al., 2009; Mandal et al., 2012). Salt stress stimulates NO and ONOO accumulation in roots (Corpas et al., 2009), but the contribution of NO to root meristem growth under salinity stress has yet to be examined in detail.In this study, we found that salt stress significantly down-regulated the expression of PIN genes and promoted AUXIN RESISTANT3 (AXR3)/IAA17 stabilization. Furthermore, salt stress stimulated NO accumulation, and pharmacological inhibition of NO biosynthesis compromised the salt-mediated reduction in root meristem size. Our results support a model in which salt stress reduces root meristem size by increasing NO accumulation, which represses PIN expression and stabilizes IAA17, thereby reducing auxin levels and repressing auxin signaling.  相似文献   

6.
A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.Iron (Fe) is an essential trace element for plants (Pilon et al., 2009), and species differ greatly in how much Fe they require for optimal growth (Wheeler and Power, 1995; Batty and Younger, 2003). As Fe is frequently limiting, Fe deficiency is more commonly studied than toxicity arising from excess Fe exposure (Lei et al., 2014; Bashir et al., 2015; Briat et al., 2015). Fe is also a major focus for efforts in biofortification by targeting Fe transporters (Zhai et al., 2014; Pinto and Ferreira, 2015). However, the excessive presence of Fe in soils is equally common, in particular in soils characterized by low pH and hypoxic or anoxic conditions (Connolly and Guerinot, 2002). Toxicity arising from excess Fe exposure is recognized as one of the major plant diseases attributable to abiotic factors that impact the development and yield potential in the world’s leading cereal crops, rice (Oryza sativa) and wheat (Triticum aestivum; Becker and Asch, 2005; Khabaz-Saberi et al., 2012). Understanding the mechanisms underlying excess Fe toxicity is therefore essential.Plastic responses in the plant’s root system architecture are known to constitute a major mechanism by which plants cope with fluctuating environments. Lateral roots (LRs), which typically comprise the majority of the root system, contribute pivotally to nutrient acquisition from soil, and modulating LR development is a very important avoidance strategy for plants when confronted with unfavorable edaphic conditions, such as high salinity or heavy metals (Ivanov et al., 2003). In the case of excess exposure to Fe, stunting of the root system is among the chief symptoms of toxicity (Becker and Asch, 2005). However, while some information has been emerging on the primary root axis (Li et al., 2015), the specific role of the plant’s LR apparatus remains poorly studied. Yamauchi and Peng (1995) reported retardation of root growth and a reduction in LR length and number under excess Fe conditions. Recently, Reyt et al. (2015) showed that excess Fe had no significant effect on LR initiation in the LR branching zone and that ferritins play an important role in LR emergence under excess Fe in this portion of the root, although the authors had not investigated LR development in the root portions near the growing tip of the primary root. Because LR initiation is restricted to specific pericycle cell files adjacent to a xylem pole in the basal region of the meristem (De Smet et al., 2007; Fukaki and Tasaka, 2009), and LR formation in this new growing root portion may be more susceptible to stress stimuli, such as observed with exposure to high NH4+ and salt (Duan et al., 2013; Li et al., 2013), it is reasonable to suggest that modulation of LR formation near the growing tip of the primary root is critical to the response to excess Fe stress.In Arabidopsis (Arabidopsis thaliana), the development of LRs proceeds through the following stages: lateral root primordia (LRP) initiation, establishment, emergence, activation into mature LRs, and final maintenance of LR elongation (Fukaki and Tasaka, 2009; Péret et al., 2009). The hormones abscisic acid (ABA) and auxin are important internal negative and positive regulators during LR development, respectively (Fukaki and Tasaka, 2009). ABA has been implicated in LRP emergence and meristem activation independent of auxin (De Smet et al., 2003). Auxin is an important internal positive regulator during LR development (Fukaki and Tasaka, 2009), and auxin transport is critical (Blilou et al., 2005). Mutants in auxin efflux carriers such as PIN-FORMED (PIN) and P-Glycoprotein show significant defects in LR formation (Fukaki and Tasaka, 2009; Péret et al., 2009). For example, LR initiation frequency was significantly reduced in pin2 and pin3 mutants (Dubrovsky et al., 2009), and PIN2 was also shown to be involved in exogenous and endogenous signal-mediated LR development (by brassinosteroid, jasmonate, and fungal challenge; Li et al., 2005; Felten et al., 2009; Sun et al., 2009). Similarly, Auxin Resistant1 (AUX1), an auxin influx carrier, also regulates LRP positioning and initiation (De Smet et al., 2007). While both AUX1 and PIN2 are required specifically for the basipetal transport of auxin through the outer root cell layers (Fukaki and Tasaka, 2009), PIN1 localized at the basal end of vascular cells is responsible for direct acropetal auxin flow in the root stele (Blilou et al., 2005). Recently, the roles of ethylene on LR development have also been highlighted, and the ethylene-mediated LR formation is dependent on the auxin pathway (Ivanchenko et al., 2008; Lewis et al., 2011). Ethylene treatment could mediate fluorescence of AUX1 and PIN2 fluorescent protein fusions at the root tip (Růzicka et al., 2007; Lewis et al., 2011). Although ABA, auxin, and ethylene signals have been implicated as important for LR development, it is not known whether and how the three hormones are involved in the response of LR formation to Fe stress.The previously described phenotypes and physiological processes related to Fe toxicity do not clarify the effect of excess Fe on LR formation. In this study, we employed the Arabidopsis wild type and ABA-, auxin-, and ethylene-related mutants to explore the LR formation response to Fe toxicity and to elucidate the roles of ABA, auxin, and ethylene. Potential mechanisms involved in the early stress response to Fe stress are discussed.  相似文献   

7.
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The architecture of a plant’s root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly important during the early phases of lateral root organogenesis to ensure continuous lateral root initiation (LRI) and proper development of lateral root primordia (LRP). Here, we show that the early phases of lateral root organogenesis, including priming and initiation, take place in root zones with a repressed cytokinin response. Accordingly, ectopic overproduction of cytokinin in the root basal meristem most efficiently inhibits LRI. Enhanced cytokinin responses in pericycle cells between existing LRP might restrict LRI near existing LRP and, when compromised, ectopic LRI occurs. Furthermore, our results demonstrate that young LRP are more sensitive to perturbations in the cytokinin activity than are developmentally more advanced primordia. We hypothesize that the effect of cytokinin on the development of primordia possibly depends on the robustness and stability of the auxin gradient.  相似文献   

16.
In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [−DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and −DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that −DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in −DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under −DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to −DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under −DIF conditions. Indeed, petioles of plants under −DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under −DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the −DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.In nature, during the day (light), temperatures are usually higher than during the night (dark). Correspondingly, most plants show optimal growth under such synchronous light and temperature cycles. Increasing the difference between day and night temperature (+DIF) results in increased elongation growth in various species, a phenomenon referred to as thermoperiodism (Went, 1944). The opposite regime, when the temperature of the day (DT) is lower than the temperature of the night (NT), is called −DIF (negative DT/NT difference). Under −DIF conditions, the elongation growth of stems and leaves of various plant species is reduced (Maas and van Hattum, 1998; Carvalho et al., 2002; Thingnaes et al., 2003). Arabidopsis (Arabidopsis thaliana) plants grown under −DIF (DT/NT 12°C/22°C) displayed a reduction in leaf elongation of approximately 20% compared with the control (DT/NT 22°C/12°C; Thingnaes et al., 2003). −DIF is frequently applied in horticulture to produce crops with a desirable compact architecture without the need for growth-retarding chemicals (Myster and Moe, 1995). Despite the economic importance of the application of such temperature regimes in horticulture, the mechanistic basis of the growth reduction under −DIF is still poorly understood.Previously, it was demonstrated that −DIF affects phytohormone signaling in plants. In pea (Pisum sativum), for instance, the −DIF growth reduction correlated with increased catabolism of the phytohormone GA (Stavang et al., 2005). In contrast to pea, active GA levels did not decrease in response to −DIF in Arabidopsis (Thingnaes et al., 2003). On the other hand, the −DIF growth response in Arabidopsis was associated with reduced auxin levels (Thingnaes et al., 2003). The photoreceptor PHYTOCHROME B (PHYB) has been shown to be important for the response to −DIF, as phyB mutants of Arabidopsis (Thingnaes et al., 2008) and cucumber (Cucumis sativus; Patil et al., 2003) are insensitive to −DIF.In this work, the growth-related movement of mature Arabidopsis rosette leaves was analyzed under control (+DIF) and −DIF conditions. Under −DIF, the amplitude of leaf movement was decreased and the phase of movement was later, compared with control plants. The altered leaf growth patterns observed in −DIF could be restored by the application of ethylene. −DIF reduced the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE2 (ACS2) in the petiole, which correlated with reduced 1-aminocyclopropane-1-carboxylic acid (ACC) levels and decreased amplitude and delayed phase of leaf movement. Our results indicate that local ACS activity plays an important biological role, despite the fact that ethylene is a gaseous and fast-diffusing hormone. In addition, we demonstrate that in the phyB9 mutant, the phase of leaf movement is almost fully temperature entrained. Finally, ethylene levels and sensitivity are increased in phyB9, suggesting a role for PHYB in constraining temperature-induced shifts in the phase of leaf movement and dampening of leaf movement amplitude by controlling ethylene production and sensitivity.  相似文献   

17.
18.
19.
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号