首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
An inhibitory effect of PGF at a dose of 7 × 10?7 M on LH stimulated synthesis of progesterone was observed in vitro after incubation of pseudopregnant rat ovaries for a period of 2 hours. A similar effect was seen with cyclic and gestant ewe corpora lutea at the same dose of PGF. This effect was observed both in the secretion of progesterone and on the amount of progesterone present in the tissue. This inhibitory effect of PGF on LH stimulated progesterone synthesis may explain the modification in the time course for gonadotropin action in luteal tissue at high and low doses.  相似文献   

2.
The ability of various prostaglandins (PGs) to affect the in vitro anamnestic immune response of keyhole limpet hemocyanin (KLH)-primed rabbit popliteal lymph node cells was investigated. Of the four PGs studied (PGA1, PGE2 and PGF), PGE1 was found to have a stimulatory effect, whereas PGA1, PGE2 and PGF were ineffective in stimulating or inhibiting the in vitro anamnestic response. Under the conditions studied, a 3.5-fold increase in antibody production was obtained in PGE1-treated, KLH-stimulated cultures. Maximum enhancement was obtained when 0.2 μg of PGE1 were added at the time of culture initiation and were allowed to remain in contact with the lymph node cells for 24 hours.  相似文献   

3.
The activity of prostaglandins (PG) in producing vascular permeability was quantitated by dye extraction method in skin of anaesthetized rabbits. PGE1 and PGE2 (0.01–10 μg) produced increase in vascular permeability. Activity was approximately equal to that of histamine (Hist) and 120 of that of bradykinin (BK) on a weight basis. The activity of PGF and PGF was only 120 of that of PGE1 or PGE2.In spite of the relatively low potency of PGE1 and PGE2 in the rabbit, near threshold doses (0.1 or 1 μg) of PGE2 could potentiate permeability responses to bradykinin (0.1 μg) by 10 or 100-fold, respectively. Equivalent doses (0.1 or 1 μg) of histamine could not potentiate the bradykinin responses. Arachidonic acid (AA) at 1 μg, produced a 10-fold potentiation in the permeability response to bradykinin (0.1 μg). Pretreatment of the rabbits with indomethacin (20 mg/kg, i.p.) reduced the responses of BK (0.1 μg) + AA (1 μg) down to a similar magnitude of those seen with bradykinin alone. However, indomethacin did not block responses to either, BK alone, BK + PGE2, or BK + Hist. Various doses (1, 10, 100 and 300 μg) of arachidonic acid alone also produced increase in cutaneous vascular permeability, although its potency was only 1318 of that of PGE2. This activity of arachidonic acid was attributed in part to its bioconversion to PGE2, since its activity was significantly reduced by the prostaglandin antagonist, diphloretin phosphate (DPP) (60 mg/kg, i.v.) and by indomethacin (20 mg/kg, i.p.), which blocks conversion of arachidonic acid to prostaglandins. Arachidonic acid may owe some of its permeability increaseing effects to histamine release, since its effects were also reduced by the antihistamine, pyrilamine (2.5 mg/kg, i.v.).  相似文献   

4.
The biosynthesis of PGE2 and PGF was measured in intact peritoneal exudate preparations obtained fom C. parvum-treated and control C3H mice. Although both the control and stimulated preparations biosynthesized PGF and PGE2 from [1–14C] arachidonic acid, the stimulated preparations generated more of both prostaglandins than did nonstimulated preparations, probably as a result of increased synthesis within macrophages. Increased transformation of PGE2 into PGF 9-ketoreductase was noted in stimulated preparations when compared to that in control cells. The data suggest that stimulated macrophages are capable of generating increased quantities of PGF and therefore might function as one source of this substance in resolving inflammatory reactions.  相似文献   

5.
PGE1 and PGE2 significantly increased human adrenal cAMP levels invitro; cortisol output was also increased in a dose related fashion. In contrast, PGF1a and PGF2a depressed adrenal cAMP (except PGF2a at 100 μg/ml). PGF1a and PGF2a depressed cortisol levels at all doses. Indomethacin or 7-oxa-13-prostynoic acid did not affect these parameters. However, when applied in conjunction with ACTH they inhibited or enhanced hormonal action depending upon the temporal sequence of application. The findings indicate that prostaglandins modulate ACTH-adrenocortical cell interaction bidirectionally, initially potentiating and subsequently depressing ACTH stimulated events.  相似文献   

6.
The following experiments were designed in order to examine the inter-relationships of various prostaglandins (PG's) and the adrenergic nervous system, in conjunction with blood pressure and heart rate responses, in vivo. Stimulation of the entire spinal cord (50v, 0.3–3 Hz, 1.0 msec) of the pithed rat increased blood pressure, heart rate and plasma epinephrine (EPI) and norepinephrine (NE) concentration (radioenzymatic-thin layer chromatographic assay). Infusion of PGE2(10–30 μg/kg. min, i.v.) suppressed blood pressure and heart rate responses to spinal cord stimulation while plasma EPI (but not NE) was augmented over levels found in control animals. PGI2 (0.03–3.0 μg/kg. min, i.v.) suppressed the blood pressure response to spinal cord stimulation without any effect on heart rate or the plasma catecholamine levels. PGE2 and PGF2α(10–30 μg/kg. min, i.v.) did not change the blood pressure, heart rate or plasma EPI and NE responses to the spinal cord stimulation although PGF2α disclosed an overall vasopressor effect during the pre-stimulation period. At the pre-stimulation period it was also observed that PGE2, PGF2α and PGI2, had a positive chronotropic effect on the heart rate, the cardiac accelerating effect of PGE2 was not abolished by propanolol. These in vivo studies suggest that in the rat, PGE2 and PGI2 modulate sympathetic responses, primarily by interaction with the post-synaptic elements — PGE2 on both blood vessels and the heart and PGI2 by acting principally on blood vessels.  相似文献   

7.
In view of the pulsatile nature of PGF secretion from the ovine uterus at the time of luteolysis, experiments were designed to examine the effect of pulsed infusions of PGF on luteal function and to re-examine the minimal effective levels of PGF required to induce luteolysis. To mimic physiological conditions, hour-long infusions of PGF in increasing concentrations were given either 4 times in 19 h or 5 times in 25 h into the arterial supply of the autotransplanted ovary in conscious sheep on day 12 of an induced cycle. Blood flow and progesterone secretion rate from the ovary were used to monitor directly the luteolytic effect of administered PGF. The concentration of LH in peripheral plasma was measured throughout each infusion experiment and the presence of a preovulatory peak of LH was used as an indicator of the permanence of luteal regression. Four pulses of PGF in 19 h caused complete corpus luteum regression in only 1 of 4 animals whereas the addition of a fifth pulse (5 pulses in 25 h) caused permanent regression in 4 out of 4 animals. Infusion of 5 hour-long pulses of saline or PGF at a rate of <0.04 μg/h did not induce permanent suppression of progesterone secretion. The average total effective dose of PGF required to induced luteal regression when given as 5 pulses was 1/40th of the amount currently regarded as the minimal effective one when given by constant infusion into the ovarian artery. In another series of experiments the luteolytic effect of a single hour-long pulse of 0.1 μg/h PGF given daily for either 3 or 4 days was investigated. A significant fall (ANOVA, F0.01) in progesterone secretion rate, which reached a nadir at 5.3 ± 2.2 h (x ± S.D., n=15), was followed by a recovery of progesterone secretion rate. Permanent luteal regression did not occur with this protracted regimen, suggesting that a relatively short pulse frequency of PGF over a minimal period of 24 h is a necessary condition for physiological regression of the corpus luteum in sheep.  相似文献   

8.
K V Honn  W Chavin 《Life sciences》1978,22(7):543-552
The in vitro modulating effects of the E and F series prostaglandins upon the cAMP and cortisol output of normal human adrenal dice were evaluated with time and compared to the effects of ACTH. PGE1 and PGE2 significantly increased human adrenal cAMP levels; cortisol output increased in a dose related manner. Although the cortisol levels produced by E prostaglandins and ACTH were quantitatively similar, on a molar basis ACTH was greater than 106 fold more effective. PGE, PGF, PGF and PGF depressed adrenal cAMP, except PGF and PGF at 100 μg/ml. PGF and PGF depressed cortisol levels at all doses. Similarly, PGF and PGF also depressed cortisol output, except PGF at 100 μg/ml which was stimulatory. In both series of prostaglandins the temporal responses were dose related in regard to the cyclic nucleotide and steroid alterations. The findings demonstrate the E and F series prostaglandins act antagonistically in respect to cAMP and cortisol output. In addition, as the cAMP level and cortisol output are not always correlated, it appears that these prostaglandin mediated events are separable. The relationship between adrenal prostaglandins and cyclic nucleotides, therefore, invites a more sophisticated second messenger concept in terms of adrenocortical function, than currently proposed.  相似文献   

9.
Two in vitro methods for measuring human endometrial prostaglandin production were compared. Endometrial samples from eight patients were incubated over eight hours by a perifusion and a superfusion technique. The collected fractions were assayed by radioimmunoassay for PGE2 and PGF.There was no significant difference between the perifusion and superfusion methods for the pattern and amount of PGE2 and PGF2 production with time. Significantly higher production levels of PGE2 and PGF were found in secretory phase endometria than in proliferative phase endometria. Histological examination of the tissue specimens by light and electron microscopy showed that both methods caused gross tissue damage after eight hours experimentation. The superfusion method produced more morphological damage than the perifusion method. However, no tissue damage could be detected after one hour of incubation with either method.Over an eight hour period neither the perifusion nor the superfusion technique appears to be a good indicator of in vivo endometrial prostaglandin production. Either reflect the in vitro situation.  相似文献   

10.
Renal tubular epithelial cells isolated from dog and pig kidney (MDCK and LLC-PK1, respectively) transport water and electrolytes in culture. MDCK cells resemble collecting tubule cells by additional, but not all, morphologic and biochemical criteria. It has previously been reported that PGE2 appears to regulate transport activity by MDCK cells as well as their proliferation. We investigated prostaglandin biosynthesis by MDCK and LLC-PK1 cells and assessed the effects of peptide hormones, bradykinin and vasopressin, on the cells' prostaglandin biosynthesis. Thin-layer chromatography of radioactive products released by MDCK cells labelled with octatritiated of [14C] arachidonic acid indicated the presence of materials comigrating with PGE2, PGI2 (detected as 60oxo0PGF1α) and PGF2α, in decreasing order of abundance. Maclofenamate inhibited the biosynthesis of all radioactive peaks comigrating with PGs, thus confirming their identities as product of fatty acid cyclo-oxygenase activity. The chemical identities of [3H] PGE2 and [3H] 6-oxo-PGF1α made by the cells were further confirmed by treatment with KOH. Radioimmunoassay of culture fluids incubated with MDCK cells verified that PGE2 was the most abundant prostaglandin. Tranylcypromine, thought to be a specific inhibitor of prostacyclic synthetase, inhibited PGE2 as well as PGI2 biosynthesis indicating a lack of specificity of the inhibitor. The observation of PGE2 and PGF2α as respectively the most and least abundant prostaglandinds made by MDCK was in disagreement with results from another laboratory in which the reverse order of abundance was found. This suggests the presence of more than one cell line identified as MDCK but having different biochemical properties.Bradykinin stimulated acylhydrolase activity as well as PGE2 and PGI2 biosynthesis in MDCK cells while vasopressin had little or no effect. These results support the hypothesis that bradykinin's natriuretic effects may be mediated by prostaglandinds and that vasopressin is unlikely to acutely stimulate prostaglandin biosynthesis in collecting tubule cells invivo. Endogenous PGE2 may also regulate the proliferation of MDCK cells in culture.In contrast to MDCK cells, LLC-PK1 cells lacked significant prostaglandin biosynthetic capability as documented by radiometric thin-layer chromatography and radioimmunoassay. This suggests that prostaglandins may have a modulatory rather than an obligatory role in regulating transport activity by tubular epithelial cells.  相似文献   

11.
The effects of 19-hydroxy-prostaglandins (19-OH-PGs) were tested invivo on the rabbit oviduct and uterus and on the rhesus monkey (Macacamulatta) uterus. The 19-OH-PGEs suppressed spontaneous oviductal and uterine activity in the rabbit. The qualitative effect on the rabbit oviduct of 19-OH-PGEs was similar to that of PGE2. However, the typical response of the rabbit uterus to PGE2 was an increase in muscle activity. With regard to the rabbit oviduct, 19(R)-OH-PGE2 was as potent as PGE2, but 19(S)-OH-PGE2 was approximately 12 as potent as PGE2. Based on the dose of 19-OH-PGEs usually required to cause a minimal suppression and the dose of PGE2 required to cause a minimal stimulation of rabbit uterine activity, 19(R)-OH-PGE2 was twice as potent as PGE2 while 19(S)-OH-PGE2 was 12 as potent as PGE2. Stimulatory effects on the rabbit oviduct and uterus were observed following administration of 19-OH-PGEs and PGF. The potency on the rabbit oviduct of 19(S)-OH-PGF was about 15 to 110 that of PGF; the potency of 19(R)-OH-PGF was about 110 to 120 that of PGF. Both 19-OH-PGFs were approximately 15 to 110 as potent as PGF on the rabbit uterus. At the doses tested 19-OH-PGFs were inactive on the monkey uterus. Thus, these compounds are at least 15 as active as PGF. In contrast, 19(R)-OH-PGE2 had approximately the same potency as PGE2 in stimulating monkey uterine activity; but 19(S)-OH-PGE2 was approximately 13 as potent as PGE2.  相似文献   

12.
Five healthy adult men received iv PGF at dosages of 0.05, 0.20 and 2.0 μg/kg/min for 30 min. There were no significant changes in serum FSH, LH or TSH levels. Serum GH and cortisol levels were slightly increased at the highest dosage. These responses were associated with, and presumably a result of, stressful side effects. Thus, PGF cannot be used as a provocative test of pituitary hormone reserve.Prostaglandins (PG's) have recently been implicated in the release of a number of hormones from the anterior pituitary gland. The stimulation of GH release by PG's of the E series from incubated rat pituitary slices has been demonstrated. In vivo stimulation by PGE1 of ACTH in rats and of GH release in man has also been shown.The present study was undertaken in order to examine the efficacy of iv administration of PGF as a provocative test of anterior pituitary hormone reserve in man. The responses in circulating levels of gonadotropins, TSH, GH, and cortisol (as an index of ACTH) were measured.  相似文献   

13.
Prostaglandin F2α (PGF2α) release invitro by luteal tissue from mares was quantified to determine if exogenous prostaglandin analog increased endogenous luteal PGF2α production during induced luteolysis. On day 8 after ovulation, luteal tissue was collected by flank laparotomy and endometrium was collected by uterine biopsy. Mares were assigned to one of four treatments: (1) no intramuscular injection at 0-hr (n = 5), (2) 250 μg Fluprostenol (ICI 81008 PGF2α analog) at 4-hr (n = 4), (3) 250 μg Fluprostenol at 12-hr (n = 5), or (4) 250 μg Fluprostenol at 28-hr (n = 5) prior to tissue collection at laparotomy. Blood was collected from a jugular vein at laparotomy. Luteal and endometrial tissues (100-mg minces) were incubated in duplicate in 5 ml of Krebs-Ringer bicarbonate buffer (pH 7.4) in an ice bath in an air atmosphere or at 37°C in an atmosphere of 95% O2:5% CO2. The incubation treatments consisted of: no treatment, indomethacin 1.3 × 10?4M, 1 μg/ml of arachidonic acid, 10 μg/ml of Fluprostenol, and 100 μM dbc-AMP (Fluprostenol was not added to endometrial tissue incubations). The injection of Fluprostenol induced luteolysis in these mares as indicated by decreased plasma progesterone and luteal tissue progesterone production (P<0.01). Luteal PGF2α production was only detectable in tissue from mares that had been injected with Fluprostenol; production reached a maximum by 12 hr post-injection and had returned to pre-treatment levels by 28 hr (P<0.01). Endometrial tissue produced PGF2α, but this activity was not significantly affected by injection of mares with Fluprostenol. Increased production of PGF2α by luteal tissue of mares during PGF2α analog induced luteolysis was similar to that observed in the pig and ewe.  相似文献   

14.
Paired segments of rat uterus were treated in vitro with relaxin (W1164-3, 150 GPU/mg) until the amplitude of contraction was reduced to at least 50% of the pre-treatment amplitude. Test segments then received 100 ng of either PGE1, PGE2, PGF2α or 250 uU of oxytocin. Control segments remained untreated. There was a significant increase in contraction amplitude in response to the spasmogens (P < 0.05) but no increase was seen in controls.  相似文献   

15.
Metabolism of radiolabeled arachidonic acid (1AA) by blastocysts and endometrial slices recovered from five gilts 16 days after detection of estrus was studies in vitro. Blastocysts from each gilt were divided into four 216 ± 18 mg, and each portion was placed into a separate petri dish containing 15 ml modified minimum essential medium (MEM)_. The incubates from each gilt received either 25, 50, 100 or 200 μg radioinert arachidonic acid (AA). Endometrium was dissected from each uterin horn, sliced and duplicate 509 ± 3 mg portions from each gilt were placed into petri dishes containing 15 ml MEM and 200 μm AA. All incubates received 5 νCi of 1AA (either [14C]-arichidonic acid or [3H]-arichidonic acid). The incubates were rocked at 37°C for 24 h in an atmosphere of 50% n2:45% O2:5% CO2. After incubation, tissues and MEM were separated by centrifugation. Metabolism of 1AA was assessed in extracts of MEM and tissue homogenates by separating 1AA and its metabolites on columns of Sephades LH-20. Blastocysts produced compounds that migrated with [3H]-13,14-dihydro-15-keto-PGF2α (1PGFM), [3H]-PGE2 (1PGE2) and [3H]-PGF2α (1PGF2α). The greatest (P<.05) proportion (35.7 ± 1.8%) of the radioactivity in blastocyst MEM was recovered as PGE2. In blastocyst homogenates, most (66.2 ± 3.3%; P<0.05) of the radioactivity was in a nonporal peak assumed to be arachidonate esters. The concentration of AA ni MEM did not alter metabolism of 1AA by blastocysts. Endometrial slices produced 1PGFM and 1PGE2 but only in small amounts, and they were capable of producing nonpolar, probably esterified, forms of 1AA. It was concluded that porcine blastocysts produced and metabolized prostaglandins in vitro and that they make a contribution to the uterine milieu during early pregnancy.  相似文献   

16.
The effect on smooth muscle of the endoperoxides PGG2 and PGH2, which are intermediates in prostaglandin biosynthesis, was studied in different systems in vitro and in vivo. On gastrointestinal smooth muscle (gerbil colon, rat stomach) PGG2 and PGH2 produced contractions comparable to those of PGE2 and PGF2a whereas contractions elicited on vascular (rabbit aorta) and airway (guinea-pig trachea) smooth muscle were considerably greater than those of PGE2 and PGF2a respectively. On intravenous injection into guinea-pigs PGG2 and PGH2 caused a triphasic change in blood pressure and were 8–10 times more effective than PGF2a in producing an increase in tracheal insufflation pressure. When given as aerosols the unstable endoperoxides were less effective than PGF2a. It is concluded that the endoperoxides are potent smooth muscle stimulants and that they are more effective than their degradation products (PGD2, PGE2, PGF2a) in some systems.  相似文献   

17.
Both intact cortical tissue and isolated cortical cells from the adrenal gland of the rat were analyzed for 6-keto-PGF, the hydrolysis metabolite of PGI2, using high-performance liquid chromatography and gas chromatography-mass spectrometry. 6-Keto-PGF was present in both incubations of intact tissue and isolated cells of the adrenal cortex, at higher concentrations than either PGF or PGE2. Thus, the cortex does not depend upon vascular components for the synthesis of the PGI2 metabolite. Studies in vitro, using isolated cortical cells exposed to 6-keto-PGF (10?6-10?4M), show that this PG does not alter cAMP levels or steroidogenesis. Cells exposed to PGI2 (10?6-10?4M), however, show a concentration-dependent increase of up to 4-fold in the levels of cAMP without altering corticosterone production. ACTH (5–200 μU/ml) increased cAMP levels up to 14-fold, and corticosterone levels up to 6-fold, in isolated cells. ACTH plus PGI2 produced an additive increase in levels of cAMP, however, the steroidogenic response was equal to that elicited by ACTH alone. Adrenal glands of the rat perfused in situ with PGI2 showed a small decrease in corticosterone production, whereas ACTH greatly stimulated steroid release. Thus, while 6-keto-PGF is present in the rat adrenal cortex, its precursor, PGI2, is not a steroidogenic agent in this tissue although it does stimulate the accumulation of cAMP.  相似文献   

18.
Human corpora lutea of defined ages were excise at operation cut into pieces and incubated in the presence of HCG, PGF and PGE2 alone or in combination. Following incubation cAMP formation in tissue and medium was determined. HCG-stimulated tissue cAMP content was most pronounced at a corpus luteum age of 7–10 days after ovulation. This stimulation was antagonized by PGF in corpora lutea older than 6 days. PGE2 stimulated cAMP formation per se and this effect was more pronounced when HCG and PGE2 were combined. A possible role for PGF as a luteolytic substance in the human is suggested.  相似文献   

19.
A possible direct effect of prostaglandins on α-melanotropin (α-MSH) release at the level of the intermediate lobe of the frog pituitary was investigated in vitro using a perifusion system technique. The effect of prostaglandins was studied on both spontaneous and TRH-stimulated α-MSH secretion. No significant effect of PGE1, PGE2, PGF or PGF on basal release of α-MSH could be detected. Indomethacin did not alter the α-MSH release induced by TRH. Conversely a significant increase in TRH-induced α-MSH secretion was observed in the presence of 1 x 10?6M PGE1. This magnifying effect was directly related to the concentration of TRH for doses ranging from 1 x 10?8M to 1 x 10?6M.  相似文献   

20.
In vitro prostaglandin biosynthesis by uteri of ovariectomized rats and guinea pigs treated or untreated with oestradiol 17 β, administered subsutaneously, was measured by R.I.A. of PGF and PGE2. Incubations with [1-14C] arachidonic acid were also performed and labelled metabolites were analyzed by TLC. The main metabolite in rats was 6 keto PGF and in decreasing order of magniture, PGF and PGE2. In guinea pig PGF2ga was the main product. Ovariectomy in rats completely changed the pattern of synthesized prostanoids: PGI2 production was doubled when compared to cycling rats and PGE2 increased 10 fold. PGF walues were similar to the mean value measured during the cycle. OE2 treatment almost completely inhibited PGI2 synthesis and reduced PGE2 by half. Total PG synthesis in OE2 treated animals was decreased by 5 fold when compared to spayed rats. Endogenous PGF synthesis was slightly stimulated. In the guinea pig OE2 treatment of ovariectomized animals increased the total synthesis from 50 per cent. PGF was always the main metabolite. In conclusion OE2 regulation of uterine PG synthesis is depending on the animal species and cannot be explained by a unique effect on the cyclooxyhenase, but rather by an interplay on the various enzymes of the arachidonic acid cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号