首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed.  相似文献   

2.
Insect midgut proteases are excellent targets for insecticidal agents such as Bacillus thuringiensis Cry toxins and protease inhibitors. The midgut proteases of Achaea janata have been characterized and Casein zymograms indicated at least five distinct activities corresponding to approx 17, 20, 29 and 80, and 90 kDa. Using a combination of synthetic substrates and specific inhibitors in casein zymograms, photometric assays and activity blots, three trypsin-like and one elastase-like serine proteases were identified but no chymotrypsin-like activity. Various proteinase inhibitors displayed differential inhibitory effects towards the midgut proteases.  相似文献   

3.
Hook VY  Hwang SR 《Biological chemistry》2002,383(7-8):1067-1074
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.  相似文献   

4.
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.  相似文献   

5.
The physicochemical and enzymatic properties of five different extracellular proteases of Streptomyces moderatus were studied. The first protease was found to be a metal chelator sensitive protease with a Mr of 21,000 +/- 1000 a and a pI of 4.6. The second enzyme was an anionic trypsin-like protease (Mr 19,000 +/- 1000; pI 3.8) with a Km value of 4.76 X 10(-4) M on N-benzoyl-L-arginine-p-nitroanilide. A Km value of 1.52 X 10(-4) M was obtained when N-benzoyl-L-arginine ethyl ester was used as the substrate. The other three enzymes were found to be serine alkaline proteases with Mr's of 22,000, 29,000, and 23,000 +/- 1000 and with respective pI's of 7.8, 8.4, and 9.2. All the proteases showed optimum activity in the alkaline pH range. One of the three proteases was found to possess chymotrypsin and elastase-like properties. All five proteases were found to be unstable at temperatures above 60 degrees C. Except the trypsin-like protease, which was stable only in acidic pH, all other enzymes were found to be stable over a wide range of pH.  相似文献   

6.
It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.  相似文献   

7.
A series of diphenylphosphonate-based probes were developed for the trypsin-like serine proteases. These probes selectively target serine proteases rather than general serine hydrolases that are targets for fluorophosphonate-based probes. This increased selectivity allows detection of low abundance serine proteases in complex proteomes using simple SDS-PAGE methods. We present here the application of multiple probes in enzyme activity profiling of intact mast cells, a type of inflammatory cell implicated in allergy and autoimmune diseases.  相似文献   

8.
We identified a serine protease with a molecular mass of 37 kDa in the midgut of the silkworm, Bombyx mori. The activity of this protease (37-kDa protease: p37k) appears after pupation, when the metamorphic remodeling of the midgut is under progress. The sequence analysis of the purified protease and its cDNA revealed that p37k is a trypsin-type serine protease, which is highly similar to serine proteases of other insects, including CG4386 of Drosophila melanogaster. In our molecular phylogenetic analysis, these proteases are grouped together with CG4386-like serine proteases of other insects to form an isolated cluster. The p37k protein and its putative orthologs present in this cluster have two unique sequence motifs, CxxCxC and FIDWLxxLLG, in the N-terminal side of the catalytic region. The gene for p37k is expressed in the midgut on day 2 of the silk-spinning larva, and the p37k polypeptide becomes detectable with a specific antibody at this stage of the midgut. On the other hand, p37k activity is not detectable until pupation, indicating that p37k is present in the larval midgut as an inactive precursor, which then is activated after pupation. A recombinant p37k produced using a baculovirus system is also inactive in its intact form. However, the recombinant p37k can be converted to an active protease when incubated in the homogenate of the midgut, suggesting that some unidentified midgut factor(s) are involved in the activation of p37k.  相似文献   

9.
We show that chymotrypsin-like, as well as trypsin-like, proteases are in granules isolated from cytolytic lymphocytes by the capacity of the granules to hydrolyze the peptide substrates Z-Phe-Leu-Phe-SBzl and Z-Ala-Gly-Arg-SBzl, respectively. We report protease inhibitors that can abrogate or delay granule-mediated cytolysis. Two mechanism-based isocoumarin serine protease inhibitors and Z-Gly-Leu-Phe-CH2Cl completely abrogated granule cytolysis. Lima bean and soybean trypsin inhibitors and chymostatin delayed but did not prevent this cytolysis. These data represent the first use of the powerful isocoumarin inhibitors as biological probes and indicate that lymphocyte serine proteases participate in the granule cytolytic process.  相似文献   

10.
Cospin (PIC1) from Coprinopsis cinerea is a serine protease inhibitor with biochemical properties similar to those of the previously characterized fungal serine protease inhibitors, cnispin from Clitocybe nebularis and LeSPI from Lentinus edodes, classified in the family I66 of the MEROPS protease inhibitor classification. In particular, it exhibits a highly specific inhibitory profile as a very strong inhibitor of trypsin with K(i) in the picomolar range. Determination of the crystal structure revealed that the protein has a β-trefoil fold. Site-directed mutagenesis and mass spectrometry results have confirmed Arg-27 as the reactive binding site for trypsin inhibition. The loop containing Arg-27 is positioned between the β2 and β3 strands, distinguishing cospin from other β-trefoil-fold serine protease inhibitors in which β4-β5 or β5-β6 loops are involved in protease inhibition. Biotoxicity assays of cospin on various model organisms revealed a strong and specific entomotoxic activity against Drosophila melanogaster. The inhibitory inactive R27N mutant was not entomotoxic, associating toxicity with inhibitory activity. Along with the abundance of cospin in fruiting bodies of C. cinerea and the lack of trypsin-like proteases in the C. cinerea genome, these results suggest that cospin and its homologs are effectors of a fungal defense mechanism against fungivorous insects that function by specific inhibition of serine proteases in the insect gut.  相似文献   

11.
Han J  Zhang H  Min G  Kemler D  Hashimoto C 《FEBS letters》2000,468(2-3):194-198
Serpins define a large protein family in which most members function as serine protease inhibitors. Here we report the results of a search for serpins in Drosophila melanogaster that are potentially required for oogenesis or embryogenesis. We cloned and sequenced ovarian cDNAs that encode six distinct proteins having extensive sequence similarity to mammalian serpins, including residues important in the serpin inhibition mechanism. One of these new serpins in recombinant form inactivates, and complexes with, trypsin-like proteases in vitro. To our knowledge, these results represent the first evidence for a serpin in Drosophila that functions as a serine protease inhibitor.  相似文献   

12.
Heparin antagonists are potent inhibitors of mast cell tryptase   总被引:7,自引:0,他引:7  
Tryptase may be a key mediator in mast cell-mediated inflammatory reactions. When mast cells are activated, they release large amounts of these tetrameric trypsin-like serine proteases. Tryptase is present in a macromolecular complex with heparin proteoglycan where the interaction with heparin is known to be essential for maintaining enzymatic activity. Recent investigations have shown that tryptase has potent proinflammatory activity, and inhibitors of tryptase have been shown to modulate allergic reactions in vivo. Many of the tryptase inhibitors investigated previously are directed against the active site. In the present study we have investigated an alternative approach for tryptase regulation. We show that the heparin antagonists Polybrene and protamine are potent inhibitors of both human lung tryptase and of recombinant mouse tryptase (mouse mast cell protease 6). Protamine inhibited tryptase in a competitive manner whereas Polybrene showed noncompetitive inhibition kinetics. Treatment of tetrameric, active tryptase with Polybrene caused dissociation into monomers, accompanied by complete loss of enzymatic activity. The present report thus suggests that heparin antagonists potentially may be used in treatment of mast cell-mediated diseases such as asthma.  相似文献   

13.
Azeez A  Sane AP  Bhatnagar D  Nath P 《Phytochemistry》2007,68(10):1352-1357
Programmed cell death during senescence in plants is associated with proteolysis that helps in remobilization of nitrogen to other growing tissues. In this paper, we provide one of the few reports for the expression of specific serine proteases during senescence associated proteolysis in Gladiolus grandiflorus flowers. Senescence in tepals, stamens and carpels results in an increase in total protease activity and a decrease in total protein content. Of the total protease activity, serine proteases account for about 67-70% while cysteine proteases account for only 23-25%. In-gel assays using gelatin as a substrate and specific protease inhibitors reveal the enhanced activity of two trypsin-type serine proteases of sizes 75 kDa and 125 kDa during the course of senescence. The activity of the 125 kDa protease increases not only during tepal senescence but also during stamen and carpel senescence indicating that it is responsive to general senescence signals.  相似文献   

14.
Human kallikrein 14 (KLK14) is a member of the human kallikrein gene family of serine proteases, and its protein, hK14, has recently been suggested to serve as a new ovarian and breast cancer marker. To gain insights into hK14's physiological functions, the active recombinant enzyme was obtained in an enzymatically pure state for biochemical and enzymatic characterizations. We studied its substrate specificity and behavior to various protease inhibitors, and identified candidate physiological substrates. hK14 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type I, collagen type IV, fibrinogen, and high-molecular-weight kininogen. Furthermore, it rapidly hydrolyzed insulin-like growth factor binding protein-3 (IGFBP-3). These findings suggest that hK14 may be implicated in tumor progression in ovarian carcinoma.  相似文献   

15.
Mulenga A  Erikson K 《Gene》2011,482(1-2):78-93
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome.  相似文献   

16.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type transmembrane serine protease inhibitor initially identified as a potent inhibitor of hepatocyte growth factor activator (HGFA), a serine protease that converts pro-HGF to the active form. HAI-1 also has inhibitory activity against serine proteases such as matriptase, hepsin and prostasin. In this study, we examined effects of HAI-1 on the protease activity and proteolytic activation of human airway trypsin-like protease (HAT), a transmembrane serine protease that is expressed mainly in bronchial epithelial cells. A soluble form of HAI-1 inhibited the protease activity of HAT in vitro. HAT was proteolytically activated in cultured mammalian cells transfected with its expression vector, and a soluble form of active HAT was released into the conditioned medium. The proteolytic activation of HAT required its own serine protease activity. Co-expression of the transmembrane full-length HAI-1 inhibited the proteolytic activation of HAT. In addition, full-length HAI-1 associated with the transmembrane full-length HAT in co-expressing cells. Like other target proteases of HAI-1, HAT converted pro-HGF to the active form in vitro. These results suggest that HAI-1 functions as a physiological regulator of HAT by inhibiting its protease activity and proteolytic activation in airway epithelium.  相似文献   

17.
Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and β-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins.  相似文献   

18.
A major protease from human breast cancer cells was previously detected by gelatin zymography and proposed to play a role in breast cancer invasion and metastasis. To structurally characterize the enzyme, we isolated a cDNA encoding the protease. Analysis of the cDNA reveals three sequence motifs: a carboxyl-terminal region with similarity to the trypsin-like serine proteases, four tandem cysteine-rich repeats homologous to the low density lipoprotein receptor, and two copies of tandem repeats originally found in the complement subcomponents C1r and C1s. By comparison with other serine proteases, the active-site triad was identified as His-484, Asp-539, and Ser-633. The protease contains a characteristic Arg-Val-Val-Gly-Gly motif that may serve as a proteolytic activation site. The bottom of the substrate specificity pocket was identified to be Asp-627 by comparison with other trypsin-like serine proteases. In addition, this protease exhibits trypsin-like activity as defined by cleavage of synthetic substrates with Arg or Lys as the P1 site. Thus, the protease is a mosaic protein with broad spectrum cleavage activity and two potential regulatory modules. Given its ability to degrade extracellular matrix and its trypsin-like activity, the name matriptase is proposed for the protease.  相似文献   

19.
Dichelobacter nodosus is the principal causative agent of ovine footrot and its extracellular proteases are major virulence factors. Virulent isolates of D. nodosus secrete three subtilisin-like serine proteases: AprV2, AprV5 and BprV. These enzymes are each synthesized as precursor molecules that include a signal (pre-) peptide, a pro-peptide and a C-terminal extension, which are processed to produce the mature active forms. The function of the C-terminal regions of these proteases and the mechanism of protease processing and secretion are unknown. AprV5 contributes to most of the protease activity secreted by D. nodosus. To understand the role of the C-terminal extension of AprV5, we constructed a series of C-terminal-deletion mutants in D. nodosus by allelic exchange. The proteases present in the resultant mutants and their complemented derivatives were examined by protease zymogram analysis, western blotting and mass spectrometry. The results showed that the C-terminal region of AprV5 is required for the normal expression of protease activity, deletion of this region led to a delay in the processing of these enzymes. D. nodosus is an unusual bacterium in that it produces three closely related extracellular serine proteases. We have now shown that one of these enzymes, AprV5, is responsible for its own maturation, and for the optimal cleavage of AprV2 and BprV, to their mature active forms. These studies have increased our understanding of how this important pathogen processes these virulence-associated extracellular proteases and secretes them into its external environment.  相似文献   

20.
棉铃虫幼虫中肠主要蛋白酶活性的鉴定   总被引:28,自引:3,他引:25  
根据棉铃虫Helicoverpa armigera(Hubner)中肠酶液对蛋白酶专性底物在不同pH下的水解作用,棉铃虫中肠的3种丝氨酸蛋白酶得到鉴定。它们是:强碱性类胰蛋白酶,水 解a-N-苯甲酰-DL-精氨酸-p-硝基苯胺的最适pH在10.50以上;弱碱性类胰蛋白酶,水解p-甲苯磺酰-L-精氨酸甲酯的最适pH为8.50~9.00;类胰凝乳蛋白酶, 水解N一苯甲酰-L-酪氨酸乙酯的最适pH亦为8.50-9.00。中肠总蛋白酶活性用偶 氮酪蛋白测定,最适pH亦在10.50以上。Ca2+对昆虫蛋白酶无影响,Mg2+仅对弱碱性类胰蛋白酶有激活作用。对苯甲基磺酰氟和甲基磺酰-L-赖氨酸氯甲基酮对弱碱性类胰蛋白酶的抑制作用较强,而对强碱性类胰蛋白酶的抑制作用较弱。甲基磺酰-L苯丙氨酸氯甲基酮除能抑制类胰凝乳蛋白酶外,还能激活弱碱性类胰蛋白酶。对牛胰蛋白酶有强抑制作用的卵粘蛋白抑制剂对昆虫蛋白酶却无抑制作用。大豆胰蛋白酶抑制剂对该虫的3种丝氨酸蛋白酶均有强的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号