首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The recently identified fungal protease inhibitors cnispin, from Clitocybe nebularis, and cospin, from Coprinopsis cinerea, are both β-trefoil proteins highly specific for trypsin. The reactive site residue of cospin, Arg27, is located on the β2–β3 loop. We show here, that the reactive site residue in cnispin is Lys127, located on the β11–β12 loop. Cnispin is a substrate-like inhibitor and the β11–β12 loop is yet another β-trefoil fold loop recruited for serine protease inhibition. By site-directed mutagenesis of the P1 residues in the β2–β3 and β11–β12 loops in cospin and cnispin, protease inhibitors with different specificities for trypsin and chymotrypsin inhibition have been engineered. Double headed inhibitors of trypsin or trypsin and chymotrypsin were prepared by introducing a second specific site residue into the β2–β3 loop in cnispin and into the β11–β12 loop in cospin. These results show that β-trefoil protease inhibitors from mushrooms exhibit broad plasticity of loop utilization in protease inhibition.  相似文献   

2.
Proteases carry out a number of crucial functions inside and outside the cell. To protect the cells against the potentially lethal activities of these enzymes, specific inhibitors are produced to tightly regulate the protease activity. Independent reports suggest that the Kunitz-soybean trypsin inhibitor (STI) family has the potential to inhibit proteases with different specificities. In this study, we use a combination of biophysical methods to define the structural basis of the interaction of papaya protease inhibitor (PPI) with serine proteases. We show that PPI is a multiple-headed inhibitor; a single PPI molecule can bind two trypsin units at the same time. Based on sequence and structural analysis, we hypothesize that the inherent plasticity of the β-trefoil fold is paramount in the functional evolution of this family toward multiple protease inhibition.  相似文献   

3.
The amyloid precursor protein (APP) is a ubiquitously expressed transmembrane adhesion protein and the progenitor of amyloid-β peptides. The major splice isoforms of APP expressed by most tissues contain a Kunitz protease inhibitor domain; secreted APP containing this domain is also known as protease nexin 2 and potently inhibits serine proteases, including trypsin and coagulation factors. The atypical human trypsin isoform mesotrypsin is resistant to inhibition by most protein protease inhibitors and cleaves some inhibitors at a substantially accelerated rate. Here, in a proteomic screen to identify potential physiological substrates of mesotrypsin, we find that APP/protease nexin 2 is selectively cleaved by mesotrypsin within the Kunitz protease inhibitor domain. In studies employing the recombinant Kunitz domain of APP (APPI), we show that mesotrypsin cleaves selectively at the Arg15-Ala16 reactive site bond, with kinetic constants approaching those of other proteases toward highly specific protein substrates. Finally, we show that cleavage of APPI compromises its inhibition of other serine proteases, including cationic trypsin and factor XIa, by 2 orders of magnitude. Because APP/protease nexin 2 and mesotrypsin are coexpressed in a number of tissues, we suggest that processing by mesotrypsin may ablate the protease inhibitory function of APP/protease nexin 2 in vivo and may also modulate other activities of APP/protease nexin 2 that involve the Kunitz domain.  相似文献   

4.
Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera.  相似文献   

5.
Elastase from Aspergillus sp. is an important factor for aspergillosis. AFUEI is an inhibitor of the elastase derived from Aspergillus fumigatus. AFUEI is a member of the I78 inhibitor family and has a high inhibitory activity against elastases of Aspergillus fumigatus and Aspergillus flavus, human neutrophil elastase and bovine chymotrypsin, but does not inhibit bovine trypsin. Here we report the crystal structure of AFUEI in two crystal forms. AFUEI is a wedge-shaped protein composed of an extended loop and a scaffold protein core. The structure of AFUEI shows remarkable similarity to serine protease inhibitors of the potato inhibitor I family, although they are classified into different inhibitor families. A structural comparison with the potato I family inhibitors suggests that the extended loop of AFUEI corresponds to the binding loop of the potato inhibitor I family, and AFUEI inhibits its cognate proteases through the same mechanism as the potato I family inhibitors.  相似文献   

6.
The vast majority of protein protease inhibitors bind their targets in a substrate-like manner. This is a robust and efficient mechanism of inhibition but, due to the highly conserved architecture of protease active sites, these inhibitors often exhibit promiscuity. Inhibitors that show strict specificity for one protease usually achieve this selectivity by combining substrate-like binding in the active site with exosite binding on the protease surface. The development of new, specific inhibitors can be aided greatly by binding to non-conserved regions of proteases if potency can be maintained. Due to their ability to bind specifically to nearly any antigen, antibodies provide an excellent scaffold for creating inhibitors targeted to a single member of a family of highly homologous enzymes. The 2.2 Å resolution crystal structure of an Fab antibody inhibitor in complex with the serine protease membrane-type serine protease 1 (MT-SP1/matriptase) reveals the molecular basis of its picomolar potency and specificity. The inhibitor has a distinct mechanism of inhibition; it gains potency and specificity through interactions with the protease surface loops, and inhibits by binding in the active site in a catalytically non-competent manner. In contrast to most naturally occurring protease inhibitors, which have diverse structures but converge to a similar inhibitory archetype, antibody inhibitors provide an opportunity to develop divergent mechanisms of inhibition from a single scaffold.  相似文献   

7.
The storage tissues of many plants contain protease inhibitors that are believed to play an important role in defending the plant from invasion by pests and pathogens. These proteinaceous inhibitor molecules belong to a number of structurally distinct families. We describe here the isolation, purification, initial inhibitory properties, and three-dimensional structure of a novel trypsin inhibitor from seeds of Veronica hederifolia (VhTI). The VhTI peptide inhibits trypsin with a submicromolar apparent K(i) and is expected to be specific for trypsin-like serine proteases. VhTI differs dramatically in structure from all previously described families of trypsin inhibitors, consisting of a helix-turn-helix motif, with the two alpha helices tightly associated by two disulfide bonds. Unusually, the crystallized complex is in the form of a stabilized acyl-enzyme intermediate with the scissile bond of the VhTI inhibitor cleaved and the resulting N-terminal portion of the inhibitor remaining attached to the trypsin catalytic serine 195 by an ester bond. A synthetic, truncated version of the VhTI peptide has also been produced and co-crystallized with trypsin but, surprisingly, is seen to be uncleaved and consequently forms a noncovalent complex with trypsin. The VhTI peptide shows that effective enzyme inhibitors can be constructed from simple helical motifs and provides a new scaffold on which to base the design of novel serine protease inhibitors.  相似文献   

8.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

9.
Previous studies have shown that the domestic mites Dermatophagoides pteronyssinus and D. farinae contain allergens with serine protease activity. These proteolytic allergens include trypsin, chymotrypsin, elastase, kallikrein, and C3/C5 convertase. However, it is not known whether the domestic mite Blomia tropicalis shares with other mite species the serine protease activities. The enzymatic activity present in extracts obtained from food-free B. tropicalis was investigated using specific substrates and inhibitors. Based upon the concentration response and inhibition profiles, and the digestion of specific substrates our data demonstrate that extracts from B. tropicalis exhibit several serine-protease-like activities. The enzyme activities detected in the B. tropicalis extracts are trypsin, elastase, chymotrypsin, kallikrein, C3/C5 convertase, and mast cell protease. Our results also demonstrate that kallikrein and C3/C5 convertase-like activities were not significantly affected by the α1-antiprotease, a naturally occurring serine protease inhibitor which protects lung mucosa from the enzymatic action. These data strongly suggest that the Echymyopodidae mite B. tropicalis shares at least five serine proteases with members of other mite families, the Glycyphagidae and Pyroglyphidae. In addition, our data demonstrate the potential use of biochemical methods to detect serine proteases for evaluation of mite growth in vitro, or to detect environmental exposures to these enzymes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Serine proteases are involved in many processes in the nervous system and specific inhibitors tightly control their proteolytic activity. Thrombin is thought to play a role in tissue development and homeostasis. To date, protease nexin-1 is the only known endogenous protease inhibitor that specifically interferes with thrombotic activity and is expressed in the brain. In this study, we report the detection of a novel thrombin inhibitory activity in the brain of protease nexin-1(-/-) mice. Purification and subsequent analysis by tandem mass spectrometry identified this protein as the phosphatidylethanolamine-binding protein (PEBP). We demonstrate that PEBP exerts inhibitory activity against several serine proteases including thrombin, neuropsin, and chymotrypsin, whereas trypsin, tissue type plasminogen activator, and elastase are not affected. Since PEBP does not share significant homology with other serine protease inhibitors, our results define it as the prototype of a novel class of serine protease inhibitors. PEBP immunoreactivity is found on the surface of Rat-1 fibroblast cells and although its sequence contains no secretion signal, PEBP-H(6) can be purified from the conditioned medium upon recombinant expression.  相似文献   

11.
A 6.5 kDa serine protease inhibitor was purified by anion-exchange chromatography from the crude extract of the Inga umbratica seeds, containing inhibitor isoforms ranging from 6.3 to 6.7 kDa and protease inhibitors of approximately 19 kDa. The purified protein was characterized as a potent inhibitor against trypsin and chymotrypsin and it was named I. umbratica trypsin and chymotrypsin inhibitor (IUTCI). MALDI-TOF spectra of the IUTCI, in the presence of DTT, showed six disulfide bonds content, suggesting that this inhibitor belongs to Bowman-Birk family. The circular dichroism spectroscopy indicates that IUTCI is predominantly formed by unordered and beta-sheet secondary structure. It was also characterized, by fluorescence spectroscopy, as a stable protein at range of pH from 5.0 to 7.0. Moreover, this inhibitor at concentration of 75 microM presented a remarkable inhibitory activity (60%) against digestive serine proteases from boll weevil Anthonomus grandis, an important economical cotton pest.  相似文献   

12.
A versatile synthetic route to a novel series of bis-imidazolemethanes designed to inhibit the hCMV protease has been developed and a series of potential metal binding inhibitors has been identified. In selectivity assays, the compounds were highly specific for CMV protease and showed no inhibition (IC50 > 100 microM) of other prototypical serine proteases such as trypsin, elastase, and chymotrypsin. Although the presence of free zinc ions was found to be an absolute requirement for the in vitro biological activity of this class of inhibitor, the potency of the inhibitors could not be improved beyond the micromolar level.  相似文献   

13.
Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. These findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.  相似文献   

14.
We have studied an indirect role of serine and thiol proteases in the activation of human neutrophils in vitro. Stimulation was evaluated using a chemiluminescence (CL) generation system. Receptor-dependent and receptor-independent stimuli were studied, e.g. opsonized zymosan, formyl-methionyl-leucyl-phenylalanine, platelet activating factor, phorbol myristate acetate, and calcium ionophore A23187. The serine protease inhibitors TPCK and TLCK, and thiol protease inhibitor PHMB, diminished the CL with different potencies and in a dose-dependent manner after treatment of cells with the various stimuli. Non-specific serine protease inhibitor, PMSF, and trypsin substrate TAME, showed a low inhibitory potency with respect to CL generation. Synthetic substrates for chymotrypsin (BTEE, ATEE) significantly inhibited CL with the various stimuli used with some differences in susceptibility to their inhibition. Specific chymotrypsin inhibitors diminished both the resting and activator-induced CL. We suggest that cell-bound chymotrypsin-like protease(s) is involved in the activation of signal transduction in human neutrophils after both receptor-dependent and receptor-independent stimulation.  相似文献   

15.
This study examined whether the neurointermediate lobe (NIL) of the rat pituitary contains latent kallikrein- and thrombin-like proteases activated by trypsin. Partial characterization of such proteases was attempted. Also examined were the distribution of proteolytic activity within the NIL and levels in both male and female lobes. NIL homogenates were assayed for proteolytic activity at pH 8.0 before and after incubation with trypsin (10 micrograms/ml). Trypsin caused a 10-fold activation of kallikrein-like activity and a 40-fold activation of thrombin-like activity in NIL homogenates. The kallikrein-like activity was separated into two components using diethylaminoethyl-Sephadex. The predominant kallikrein-like protease was a potent kininogenase closely related or identical to glandular kallikrein and was almost exclusively localized to the intermediate lobe. The second kallikrein-like protease (kallikrein A) was a weak kininogenase sensitive to inhibition by both soybean trypsin inhibitor and aprotinin and was similarly concentrated in both the neural lobe and the intermediate lobe. The thrombin-like protease was sensitive to inhibition by hirudin (a specific thrombin inhibitor), clotted fibrinogen, and was slightly more concentrated in the neural lobe than in the intermediate lobe. NILs from female rats contained approximately 40% less kallikrein activity than NILs from male rats but did not differ in their content of thrombin-like activity.  相似文献   

16.
A new detecting method for protease inhibitors, especially for low-molecular-weight inhibitors, is reported. Inhibitor samples were separated on a protein substrate-SDS-polyacrylamide gel in a Tris-Tricine buffer system that improves the separation and identification of peptides and low-molecular-weight proteins. After electrophoresis, the gel was incubated with the target proteases to hydrolyze the background protein substrate. The inhibitor bands, which were protected from proteolysis by the target proteases, were stained. Standard low-molecular-weight inhibitors, such as pepstatin A for pepsin or matrix metalloproteases inhibitor I for collagenase, as well as larger inhibitors, such as soybean trypsin inhibitor or aprotinin for tryspin and cystatin C for papain, were demonstrated by this method and showed clear blue inhibitor bands in the white background when the gels were treated with the target proteases. Some significant applications of this method are introduced. This method is an ideal system for discovering new protease inhibitors in small natural samples.  相似文献   

17.
A trypsin proteinase inhibitor has been purified to homogeneity from the skeletal muscle of white croaker (Micropogon opercularis). Previously, we had described the occurrence in fish muscle of a serine protease (proteinase I) which showed a great capacity to degrade whole myofibrils in vitro and an endogenous inhibitor that prevented the action of the protease, both on natural and artificial substrates. In this paper, we report the purification and further biochemical characterization of the endogenous trypsin inhibitor. The purification was carried out by DEAE-Sephacel, Con A-Sepharose, Sephacryl S-300 and Mono Q. Throughout the purification procedure, trypsin inhibitory activity was assayed using azocasein as substrate. The molecular mass of the inhibitor was 65 kDa, as estimated by SDS-PAGE and gel filtration. The trypsin inhibitor is a glycoprotein, as deduced by the fact that it binds to Con A-Sepharose and stains with PAS and showed a wide range of pH stability (from 5 to 11). The thermal stability of the inhibitor considerably decreased at temperatures >60 degrees C. Assays of the inhibitor against various proteases indicated that it is highly specific for serine proteases, since it did not inhibit proteases belonging to any other groups. The inhibitor was able to inhibit the endogenous target enzyme (proteinase I) in a dose-dependent manner, with a 50% inhibition at a molar ratio close to 1. The present work contributes to improving our understanding of the physiological role of the proteinase I-inhibitor system in muscle protein breakdown, as well as its influence on post mortem proteolysis.  相似文献   

18.
Cultures of viable thymocytes and lymph node cells (LNC) were found to exhibit neutral protease activity toward radiolabeled protein substrates. Proteases were not actively secreted in serum-free culture. Thymocyte surface proteases were not affected by incubation of the cells in 1 mM ethylenediaminetetraacetic acid (EDTA) or 1 mM ethylene glycol bis(aminoethyl ether) N, N'-tetraacetic acid (EGTA); however, approximately 25% of lymph node cell surface protease activity was released from the cells by EDTA. It was concluded that the majority of protease activity displayed by both cell types was tightly associated with the cell surface. The inhibitor sensitivity of the cell surface proteases detected on hamster thymocytes and LNC and rat thymocytes was very similar. Cell surface protease activity was inhibited (85%) by the serine protease inhibitors diisopropylfluorophosphate (DFP) and phenylmethylsulfonylfluoride (PMSF) and was partially inhibited by l-1-tosylamide-2-phenylethylchloromethyl ketone(TPCK) and soybean trypsin inhibitor (SBTI), but not by N-α-p-tosyl-l-lysine-chloromethyl ketone (TLCK) or ?-aminocaproic acid (EACA). The bacterial protease inhibitor antipain was strongly inhibitory whereas leupeptin was less effective and elastinal did not inhibit cell surface protease activity. Thymocyte surface proteases were also inhibited (65%) by ZnCl2, but not be several other divalent cations. In LNC, both ZnCl2 and NiCl2 were inhibitory to a lesser extent (32% inhibition). At least one surface protease in both thymocytes and LNC could function as a plasminogen activator.  相似文献   

19.
We describe herein the design, synthesis, and in vitro biochemical evaluation of a series of potent, time-dependent inhibitors of the mast cell-derived serine protease tryptase. The inhibitors were readily obtained by attaching various heterocyclic thiols, as well as a basic primary specificity residue P1, to the 1,2,5-thiadiazolidin-3-one 1,1-dioxide scaffold. The inhibitors were found to be devoid of any inhibitory activity toward a neutral (elastase) or cysteine (papain) protease, however they were also fairly efficient inhibitors of bovine trypsin. The differential inhibition observed with trypsin suggests that enzyme selectivity can be optimized by exploiting differences in the S′ subsites of the two enzymes. The results described herein demonstrate the versatility of the heterocyclic scaffold in fashioning mechanism-based inhibitors of neutral, basic, and acidic (chymo)trypsin-like serine proteases.  相似文献   

20.
Injection of zymosan or dead yeast cells enhanced the inhibitory activity against exocellular Beauveria bassiana proteases in the cell - free haemolymph of Galleria mellonella larvae . Pre - injected larvae exhibited no decreased mortality after subsequent injection with living B. bassiana blastospores but survived for a prolonged time before death . Increased levels of protease inhibitors in the haemolymph were also observed after injection of B. bassiana proteases . In contrast , no enhanced inhibitory activity against B. bassiana proteases was detected in infected larvae when mycosis was initiated with conidia which enabled the fungus to invade host larvae through the integument in a natural manner . B. bassiana proteases were not completely inhibited by the addition of cell - free haemolymph . Protease inhibitors obtained after heat and trichloroacetic acid precipitation of cell - free haemolymph were added to the protein medium of B. bassiana to study the effect on its growth in vitro. Enriched fractions from pre - injected larvae delayed fungal growth in comparison with fractions from untreated larvae , suggesting that delayed mortality of immunized G. mellonella larvae infected with B. bassiana is due to enhanced levels of protease inhibitors . A non - virulent form of the same strain exhibited reduced capacity to release proteases in vitro. The results strongly suggest that the capacity of insects to release inhibitors against fungal proteases influences their susceptibility against entomopathogenic fungi .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号