首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
为探索植物叶片氮(N)、磷(P)、碳(C)生态化学计量特征随植物生长发育的变化规律,在普洱季风常绿阔叶林中,选取6种优势植物种(红锥(Castanopsis hystrix)、短刺锥(Castanopsis echidnocarpa)、泥柯(Lithocarpus fenestratus)、截果柯(Lithocarpus truncatus)、西南木荷(Schima wallichii)、茶梨(Anneslea fragrans))采集叶片,分析其N、P、C含量及化学计量比随植物生长发育的变化。结果显示:6种植物在不同生长阶段的N含量变化范围为7.90–17.72 mg·g–1,P为0.34–1.39 mg·g–1,C为458.48–516.87 mg·g–1,C:N为28.04–65.70,N:P为11.41–63.50,C:P为355.23–1 878.17,且不同生长阶段6种植物及总体叶片N、P、C含量及其化学计量比变化趋势各异。在变异系数上,N:P比整体变异最大,为36.46%(变化范围19.19%–91.65%),其次为C:P,为34.80%(变化范围15.99%–91.60%),C的整体变异最小,为3.12%(变化范围1.61%–5.89%)。变异来源分析结果显示,N含量、C含量、C:N、N:P及C:P均主要受植物生长阶段的影响,而P含量主要受物种与生长阶段的交互作用影响。  相似文献   

2.
动态平衡理论是生态化学计量学的理论基础, 各种有机体是否存在一个固定的化学计量比是生态学研究的热点问题。该文研究了杭州湾滨海湿地3种优势物种海三棱藨草(Scirpus mariqueter)、糙叶薹草(Carex scabrifolia)和芦苇(Phragmites australis)叶片N、P生态化学计量特征的季节变化。结果发现, 3种植物叶片N含量范围分别是7.41-17.12、7.47-13.15和6.03-18.09 mg·g-1, 平均值(±标准差)分别为(11.69 ± 2.66)、(10.17 ± 1.53)和(11.56 ± 3.19) mg·g-1; 叶片P范围分别是0.34-2.60、0.41-1.10和0.35-2.04 mg·g-1, 平均值为(0.93 ± 0.62)、(0.74 ± 0.23)和(0.82 ± 0.53) mg·g-1; N:P范围分别是7.19-30.63、11.58-16.81和8.62-21.86, 平均值为16.83 ± 8.31、14.53 ± 3.91和16.49 ± 5.51, 可见不同植物其生态化学计量值范围存在一定差异, 但经方差分析发现3种草本植物间生长季节内N、P元素含量差异并不显著(p > 0.05)。各物种叶片N、P含量均表现出在生长初期显著大于其他生长季节(p < 0.05), 生长旺季(6、7月)随着叶片生物量的持续增加, N、P含量逐渐降低并达到最小值, 随后8-9月叶片不再生长而N、P含量逐渐回升, 在10月叶片衰老时N、P含量再次下降; 叶片N:P则在生长初期较小, 在生长旺季先升高后降低, 随后叶片成熟不再生长时又逐渐增加并趋于稳定。  相似文献   

3.
在鄱阳湖湿地典型分布区采集常见植物的叶片与根际土壤样品,以探讨土壤养分变化对湿地植物叶片氮磷含量及其化学计量关系的影响。结果表明:鄱阳湖湿地植物叶N含量变化范围为4.98~52.29 g·kg~(-1),平均值为(21.71±8.99) g·kg~(-1);叶P含量波动范围为0.44~3.02 g·kg~(-1),平均值为(1.38±0.53) g·kg~(-1); N∶P平均值为(17.19±8.23);叶片N、P含量受土壤P含量的影响显著,对土壤P含量的变化较N更敏感;叶片N∶P化学计量关系具有稳定性特征,不随土壤N、P养分变化而产生显著差异,且叶片N-P线性关系在不同土壤养分环境下没有发生策略位移现象。  相似文献   

4.
鄱阳湖湿地两种优势植物叶片C、N、P动态特征   总被引:5,自引:0,他引:5  
郑艳明  尧波  吴琴  胡斌华  胡启武 《生态学报》2013,33(20):6488-6496
2011年2—6月在鄱阳湖南矶湿地国家级自然保护区逐月测定了灰化苔草(Carex cinerascens)、南荻(Triarrhena lutarioriparia)叶片C、N、P含量及其地上生物量,以阐明鄱阳湖湿地优势植物C、N、P含量及化学计量比动态特征与控制因子,探讨湿地养分利用与限制状况。结果表明:1)两种优势植物叶有机碳含量变化范围分别为365.3—386.6 mg/g和352.6—393.2 mg/g,平均值(?标准差)分别为(375.5?17.4) mg/g和(371.7?12.5) mg/g;叶N含量分别为6.96—17.59 mg/g和5.50—20.68 mg/g,平均值分别为(11.35?1.40) mg/g和(11.54?0.84) mg/g;叶P含量变化范围为0.65—2.14 mg/g和0.57—2.25 mg/g,平均含量为(1.56?0.69) mg/g和(1.55?0.68) mg/g。两种植物C:N、C:P、N:P平均值分别为37.65、413.60、9.62和41.05、410.29、9.57,C、N、P及其化学计量比种间差异不显著(P>0.05)。2)气温与地上生物量是N、P及其化学计量比季节变化的主要控制因子,气温和生物量对两种优势植物叶片氮、磷含量的影响要高于对叶有机碳含量的影响。3)植物C:N、C:P与地上生物量变化趋势基本一致,显示N、P养分利用效率随植物的快速生长而提高;根据两种优势植物及土壤N、P含量与化学计量比来判断,研究区植物更多地受氮限制。  相似文献   

5.
在荒漠极端环境下,对2种短命植物(角茴香和土大戟)和2种类短命植物(簇花芹和弯花黄芪)叶片与土壤化学计量特征及其相互关系进行研究.结果表明:每个物种所有样地的各土壤因子之间均无显著差异;土壤氮(N)含量(0.18~0.22 mg·g-1)远低于土壤磷(P)含量(1.58~1.62 mg·g-1),N/P仅为0.12~0.15,表现出严重的土壤N缺乏.4种植物叶片N、P含量及N/P之间均有显著差异,其中,弯花黄芪最大,分别为57.36 mg·g-1、2.46 mg·g-1及23.43,角茴香其次,分别为34.05 mg·g-1、1.98 mg·g-1及17.56,土大戟分别为27.07 mg·g-1、1.87 mg·g-1及14.51,簇花芹分别为28.63 mg·g-1、2.20 mg·g-1及13.10.各物种N、P含量之间均具有显著的相关性,但绝大部分土壤因子与叶片化学计量值之间没有显著相关性.  相似文献   

6.
弄清半干旱区植物叶片和细根的碳(C)、氮(N)、磷(P)元素的化学计量特征及其关联性对于认识植物C、N、P元素之间的交互作用及平衡制约关系、植物的养分利用策略,以及对全球变化的响应具有重要的意义。该研究对科尔沁沙地60种主要植物叶片和细根的C含量、N含量、P含量、C:N、C:P、N:P的差异性及其相关性进行了研究。结果表明:1)科尔沁沙地60种主要植物叶片平均C含量、N含量、P含量和C:N:P分别为424.20 mg·g~(-1)、25.60 mg·g~(-1)、2.10 mg·g~(-1)和202:12:1。细根平均C含量、N含量、P含量和C:N:P分别为434.03 mg·g~(-1)、13.54 mg·g~(-1)、1.13 mg·g~(-1)和384:12:1。细根N、P含量近似等于叶片平均N、P含量的1/2;叶片与细根的N:P并无显著差异,具有明显的保守性,反映了植物地上和地下养分吸收与分配比例的一致性;2)不同生活型植物间叶片和细根的C、N、P含量及其化学计量比存在显著差异,杂类草植物具有较高的叶片N、P含量,禾草类植物具有较高的叶片C:N和C:P,一年生杂类草和禾草类植物叶片的N:P较低。与非豆科植物相比,豆科植物具有较高的C、N含量和较低的C:N,表明不同生活型植物对养分的适应策略不同;3)相关分析表明,叶片和细根的N、P含量间显著正相关,细根C含量与N含量之间以及C含量与P含量之间显著负相关,表明植物体内这3种元素之间存在相互作用;4)科尔沁沙地植物叶片和细根间的C、N、P含量及化学计量比均有显著的正相关关系,说明植物光合产物和养分在地上和地下部分之间分配具有平行的比例关系,但不同生活型植物叶片和细根之间元素含量的相关性存在一定差异,这可能与不同生活型植物的养分利用效率有关。  相似文献   

7.
阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征   总被引:27,自引:0,他引:27  
荒漠植物在水分限制、营养元素相对匮缺的条件下,经过长期的进化适应形成了自身独特的生理生态和生态化学计量特征。在阿拉善荒漠选择52个典型群落类型,分析和研究了54种荒漠植物叶片的碳、氮和磷的化学计量特征。结果表明:荒漠植物叶片的碳(C mg/g)、氮(N mg/g)和磷(P mg/g)含量变幅较大,分别为(379.01±55.42)mg/g、(10.65±7.91)mg/g和(1.04±0.81)mg/g,变异系数分别为0.15、0.74和0.78;C/N、C/P、和N/P分别为66.70±60.81、683.16±561.94、11.53±5.06。元素间相关性分析表明,叶片的C和N不相关(P0.05),C与P显著正相关(P0.05),N和P极显著正相关(P0.01)。从植物功能型的角度分析发现,灌木和1年生草本植物对C的存储能力较低;占整体67%的灌木叶片的N、P含量最低,导致总体N、P含量较低;多年生草本和1年生草本植物叶N含量与灌木植物叶片和整体N含量无差别,而P含量明显高于灌木植物叶片和整体P含量且N/P明显低于灌木植物叶片和总体N/P,导致总体N/P较低。该研究结果与全球和中国尺度的研究相比发现,荒漠植物叶片C、N、P含量和N/P明显偏低,N/P14说明阿拉善荒漠植物在受N、P共同作用的同时更易受N限制。  相似文献   

8.
松嫩草地80种草本植物叶片氮磷化学计量特征   总被引:12,自引:0,他引:12       下载免费PDF全文
以松嫩草地常见草本植物为研究对象, 分析了各生活型和功能群叶片氮磷化学计量特征。结果显示: 松嫩草地80种草本植物的叶片氮、磷质量浓度分别为(24.2 ± 0.96) mg·g -1和(2.0 ± 0.10) mg·g -1, 面积浓度分别为(13.0 ± 0.54) mg·cm -2和(1.0 ± 0.05) mg·cm -2, 氮磷比为13.0 ± 0.39, 氮磷比与叶片磷质量浓度、叶片氮、磷面积浓度有显著相关关系; 松嫩草地植物生长受到氮限制。一年生植物叶片氮、磷质量浓度和变异系数高于其他生活型, 各生活型之间氮面积浓度和氮磷比差异不显著。豆科植物叶片氮的质量浓度、面积浓度和氮磷比高于其他功能群。在不同生活型或功能群之间, 植物叶片磷的面积浓度差异不显著, 都在1.0 mg·cm -2左右; 适当地增加群落中豆科植物的比例, 可能有助于提高松嫩草地产量和质量。  相似文献   

9.
以湘西南石漠化地区灌丛植物叶片为研究对象,分析了不同功能群植物以及3种不同石漠化程度(轻度、中度、重度)下植物叶片N、P化学计量特征.结果表明: 湘西南石漠化地区常见植物叶片平均N含量为12.89 g·kg-1,P含量为1.19 g·kg-1,N/P值为11.24,大部分植物生长受到N的限制.不同生活型之间植物叶片N含量为落叶灌木>常绿灌木>一年生草本>多年生草本,P含量与N/P值为落叶灌木>多年生草本.不同科植物之间叶片N、P含量和N/P值差异显著,禾本科植物叶片N、P含量最低,与其他科植物共同受N限制;豆科植物叶片N含量和N/P值最高,主要受P限制.双子叶植物与C3植物叶片N、P含量分别高于单子叶植物与C4植物,N/P值差异均不显著.固氮植物叶片N含量以及N/P值均高于非固氮植物,P含量差异不显著.各样地中植物叶片N、P含量之间的相关性显著,N/P值与N含量的相关性显著,仅与中度石漠化样地P含量差异显著.不同石漠化程度之间植物叶N、P含量以及N/P值差异不显著.  相似文献   

10.
探索植物器官中氮(N)、磷(P)含量沿环境梯度的分异规律,有助于揭示陆地生态系统物质循环和植物养分适应策略的过程和机制。该文采用分层随机抽样法,在中国南方12个省市区布设462个灌丛样点,对其中193种优势木本植物叶N、P含量进行调查取样。结果表明:1)南方灌丛优势木本植物叶的N、P含量几何均值分别为16.57 mg·g~(–1)和1.02 mg·g~(–1);其中,落叶木本植物(17.91 mg·g~(–1)、1.14 mg·g~(–1))显著高于常绿木本植物(15.19 mg·g~(–1)、0.89 mg·g~(–1));叶P含量较N含量具有更大的变异性和环境依赖性。2)随年平均气温(MAT)的升高,常绿木本植物叶N、P含量降低,落叶木本植物叶N、P含量呈逐渐增加的趋势;随年降水量(MAP)的增加,常绿木本植物叶N含量降低,落叶木本植物叶N含量增加,两者P含量下降。3)土壤N含量的增加对两者叶的N含量无显著影响;但随土壤P含量的增加,常绿和落叶木本植物叶P含量均显著增加。4)广义线性回归显示,植物生活型分别可解释叶N、P变异的7.6%和14.4%,MAP和土壤P含量分别解释了0.8%和16.4%的叶P变异。结果表明,中国南方灌丛中优势植物叶的N含量主要受不同生活型植物生长需求所决定,而P含量则受气候、土壤和植物生活型共同决定。  相似文献   

11.
庄伟伟  王明明 《植物研究》2022,42(5):896-909
为深入了解荒漠植物营养元素计量特征,认识元素间的交互作用,揭示不同生长期、不同沙丘部位植物元素含量差异。以古尔班通古特沙漠8种优势草本植物(4种1年生植物,4种短命植物)为研究对象,采集不同生长期(旺盛期、枯萎期)、不同沙丘部位(坡上、腹地)的植株,测定全株植物的10种营养元素(C、N、P、K、Na、Mg、Al、Mn、Cu、Zn)。结果表明:(1)8种植物元素含量存在显著差异,体现了植物因遗传特性不同而对元素选择吸收的特点,含量为:C(230.19~401.82 mg·g-1)、N(11.31~18.85 mg·g-1)、P(0.95~2.08 mg·g-1)、K(16.12~29.79 mg·g-1)、Na(0.88~3.31 mg·g-1)、Mg(3.38~5.31 mg·g-1)、Al(0.33~1.99 mg·g-1)、Mn(51.35~105.32 mg·kg-1)、Cu(4.14~6.38 mg·kg-1)、Zn(11.64~21.43 mg·kg-1)。不同种的元素含量分布格局基本相似,大小排序为:C>N>K> Mg>Na>P>Al>Mn>Zn>Cu,典型特征为富K,贫Cu、Zn,属于N制约性植物,表明环境对各类植物元素含量的一致影响。(2)元素含量受物种、生长期和沙丘部位的影响显著。4种黎科植物(Chenopodiaceae)Na含量显著比4种短命植物高。与生长旺盛期相比,8种植物在枯萎期的C、N、P、Mg、Mn、Cu、Zn含量普遍降低,而Na、K含量有不同幅度的升高,并且碱蓬、沙蓬的K含量显著升高。受土壤水分和养分丰富程度的影响,沙丘腹地植物元素含量普遍比坡上同种植物高。(3)相关性分析表明:C与P,N与Na、Mg、Cu、Zn,K与P、Al,Na与Mg,Mn与Na、Mg、Cu,Zn与Cu之间具有极显著正相关关系(P≤0.001),P与Cu,C与Cu、Zn,K与Mn、Cu、Zn之间具有极显著负相关关系(P≤0.001)。综上所述,荒漠植物元素含量的这些特征体现了其对干旱半干旱地区气候和土壤等生存环境的适应性。  相似文献   

12.
《植物生态学报》2017,41(10):1069
Aims The stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in plant organism is vital to understand plant adaptation to environment. In particular, the correlations of elemental stoichiometric characteristics between leaf and fine root could provide insights into the interaction and balance among the plant elements, nutrient use strategies and plant response to global change.Methods We measured C, N, P contents and C:N, C:P, N:P in leaves and fine roots of 60 dominant plants in Horqin sandy land. The 60 plant species were classified into five life forms and two categories such as perennial forb, annual forb, perennial grass, annual grass, shrub, legume, and non-legume. We statistically analyzed the differences and correlations of C, N and P stoichiometry either between fine root and leaf or among five life forms.Important findings The average C, N and P concentrations in leaves of 60 plant species in Horqin sandy land are 424.20 mg·g-1, 25.60 mg·g-1 and 2.10 mg·g-1, respectively. In fine roots, the corresponding element concentrations are 434.03 mg·g-1, 13.54 mg·g-1, 1.13 mg·g-1. N and P concentrations in leaf are approximately twice as high as averages in fine root. Furthermore, similar N:P between leaf and fine root indicates conservative characteristic of elemental stoichiometry in plant organism, suggesting that nutrients distribution is proportional between aboveground and underground of plants. There are significant difference of C, N, P, C:N, C:P and N:P in leaf and root among five life forms. N and P in forb and C:N and C:P in grass are averagely higher than those in other life forms. N:P in annual forb and grass, however, are lower than those in other life forms. C, N in legume are higher than those in non-legume, while C:N in legume is lower than in non-legume. These results imply that nutrient use strategies are significantly different among plant life forms. Correlations analysis showed that N and P in leaf or fine root positively correlated, but C and N, C and P in fine root negatively correlated, suggesting coupling relationship among C, N and P in leaf and fine root. Subsequently, we detected positively significant correlations in C, N, P and their ratios between leaf and fine root, suggesting proportional distribution of photosynthate and nutrient between aboveground and underground during plant growth. Generally, these results supplied fundamental data to understand mass turnover and nutrients cycling of leaves and roots in sand land.  相似文献   

13.
为研究风车草(Cyperus alternifolius)和香根草(Vetiveria zizanioides)迁移养分的能力,建立17.0m2风车草潜流式人工湿地和13.3 m2香根草潜流式人工湿地处理猪场废水,在四个季节末测定植物生物量和组织氮、磷、铜、锌含量.结果表明,香根草地下部生物量大于风车草,地上部生物量则是风车草大于香根草.风车草年地上部收获量为3406.47 g·m-2,比香根草的1483.88 g·m-2高2.3倍;风车草的氮含量为22.69 mg·g-1,比香根草的15.44 mg·g-1高7.25 mg·g-1;风车草的磷含量为6.09 mg·g-1,比香根草的5.47 mg·g-1高0.62 mg·g-1.植株含铜、锌量风车草略比香根草高.风车草每年迁移N 68.72 g·m-2和P18.49 g·m-2,香根草迁移N 8.93 g·m-2和P 3.69 g·m-2.风车草人工湿地每年由植物迁移的氮、磷、铜、锌比香根草高4~7倍.  相似文献   

14.
碳(C)、氮(N)、磷(P)生态化学计量比是生态系统过程与功能的重要特征, 开展种群生态化学计量学研究可以细化植物种群化学计量学内容, 确定限制植物生长的元素类型, 同时为大尺度模型的发展提供数据基础。为阐明我国毛竹(Phyllostachys edulis)林C、N、P化学计量学特征, 通过对毛竹主要产区文献数据的搜集整理与分析, 探索我国毛竹林“植物-土壤-凋落物”系统C、N、P及C:N、C:P、N:P生态化学计量特征, 以及不同组分生态化学计量特征与经纬度之间的关系。结果表明: 1)我国毛竹林叶片C含量为478.30 mg·g-1, N含量为22.20 mg·g-1, P含量为1.90 mg·g-1, C:N为26.80, C:P为299.60, N:P为14.40; 毛竹林0-20 cm土层C含量为21.53 mg·g-1, N含量为1.66 mg·g-1, P含量0.41 mg·g-1, C:N为14.20, C:P为66.74, N:P为4.28; 毛竹凋落物C含量为438.49 mg·g-1, N含量为13.39 mg·g-1, P含量为0.86 mg·g-1, C:N为22.53, C:P为665.67, N:P为22.55。2)毛竹林“植物-土壤-凋落物”系统中, C:N表现为: 叶片>凋落物>土壤, C:P和N:P均表现为: 凋落物>叶片>土壤, 叶片N、P再吸收率分别为39.68%和54.74%, 我国毛竹林生长发育总体上可能受到P限制或者N和P两种元素的双重限制。3)纬度梯度: 叶片N含量、N:P随纬度增加而增加, C:N随纬度增加而降低。经度梯度: 叶片N:P随经度增加而增加, P含量、C:N随经度增加而降低; 土壤C:N随经度增加而增加, N含量随经度增加而降低; 凋落物N含量随经度增加而降低。4)叶片N含量与年平均气温和年降水量均存在明显负相关关系, 但对温度的响应比降水更敏感, 叶片N含量与纬度呈正相关关系, 支持“温度-植物生理假说”, 反映了植物对自然环境的适应。  相似文献   

15.
《植物生态学报》2016,40(8):760
Aims Stoichiometric ratios of carbon (C), nitrogen (N) and phosphorus (P) are important characteristics of the ecological processes and functions. Studies on population ecological stoichiometry can refine the content of flora chemometrics, determine the limited nutrient, and provide data for process-based modeling over large scale. Phyllostachys edulis is an important forest type, whose area accounts for 74% of total bamboo forest area in Southern China. However, little is known about the ecological stoichiometric in P. edulis. This study aimed to reveal C:N, C:P and N:P stoichiometry characteristics of the “plant-soil-litter” continuum and to provide a better understanding nutrient cycling and stability mechanisms in P. edulis forest in China. Methods The data were collected from the published literature containing C、N、P content in leaf or surface soil (0-20 cm) or littefall in P. edulis forests. Important findings 1) The leaf C, N, P content were estimated at 478.30 mg·g-1, 22.20 mg·g-1, 1.90 mg·g-1 in P. edulis, and the corresponding C: N, C: P and N: P were 26.80, 299.60 and 14.40, respectively. Soil C, N, and P content in 0-20 cm were 21.53 mg·g-1, 1.66 mg·g-1, 0.41 mg·g-1, with ratios of 14.20 for C:N, 66.74 for C:P and 4.28 for N:P. The C, N and P contents were 438.49 mg·g-1, 13.39 mg·g-1, 0.86 mg·g-1 for litterfall, with the litter C:N, C:P and N:P being 25.53, 665.67, 22.55, respectively. 2) In the plant-soil-litter system in P. edulis forest, leaf had higher C:N, litter had higher C:P and N:P, while soil were the lowest. The N, P resorption rate was 39.68% and 54.74%, indicating that P. edulis forest growth and development was constrained by P or by both of N and P in China. 3) N content and N:P in leaf showed a tendency to increase with latitude, while the C:N of leaf declined with latitude. N:P of leaf increased with longitude, but the P content and the C:N of leaf showed a opposite trend. C: N of soil increased with longitude, whereas the N content of soil declined longitude. The N content of litter declined with longitude. 4) The leaf N content was negatively correlated with mean annual temperature and mean annual precipitation, but being more sensitive to temperature than precipitation. The positive correlations between N content and latitude support “Temperature-Plant Physiological” hypothesis, reflecting an adaptive strategy to environmental conditions.  相似文献   

16.
对鄱阳湖沙山14种优势植物的叶片氮、磷含量进行研究,以探讨沙山植物的生理生态适应机制,为鄱阳湖沙化土地的植被恢复提供科学依据。结果表明:鄱阳湖沙山14种优势植物叶片氮含量变化范围为3.10~16.5mg·g-1,平均值10.21mg·g-1;叶片磷含量变化范围为0.70~2.10mg·g-1,平均值1.24mg·g-1。其中,叶片氮含量仅相当于中国及全球不同植物叶片氮平均含量的一半,叶片磷含量则分别是中国及全球不同植物叶片磷平均含量的85%、70%。鄱阳湖沙山植物较低的叶片氮、磷含量主要受低土壤养分含量控制。蔓荆子作为沙山普遍分布的物种,其叶片氮、磷含量受沙山土壤养分含量低的影响,总体保持较低水平,同时表现出随沙化程度的增加而增加的趋势,这是一种对于水分胁迫的生理适应,以提高水分利用效率。鄱阳湖沙山植物叶片N:P平均比值为9.0,表明沙山植物生长更多地受氮的限制。  相似文献   

17.
以黄土丘陵区草地植被群落3种优势种白羊草、长芒草和达乌里胡枝子为对象,采用裂区试验设计,设置0、50和100 kg N·hm-2·a-13个氮处理和0、40和80 kg P2O5·hm-2·a-1 3个磷处理,于生长旺盛期测定了各植物的叶长、叶宽、比叶面积、叶片干物质含量、叶片氮、磷含量和氮磷比等指标,分析不同优势种叶片功能性状对氮磷添加的响应差异.结果表明:与未施肥相比,50和100 kg N·hm-2·a-1处理下白羊草叶长和叶宽分别显著增加35.3%和64.4%,而长芒草仅有叶长显著增加58.8%,达乌里胡枝子仅有叶宽显著增加33.9%,但三者叶片干物质含量分别显著降低10.7%、15.3%和11.2%,白羊草和长芒草叶片氮含量分别显著增加23.0%和99.2%,氮磷比分别显著增加45.8%和96.9%;40和80 kg P2O5·hm-2·a-1处理下达乌里胡枝子叶长、叶宽和比叶面积分别显著增加56.9%、41.4%和19.6%,叶片干物质含量显著下降14.9%,三者叶片磷含量分别显著增加96.7%、110.9%和238.4%,氮磷比分别显著降低45.8%、42.8%和53.7%.50 kg N·hm-2·a-1处理下,与未施磷相比,40和80 kg P2O5·hm-2·a-1处理后仅达乌里胡枝子叶长和叶宽显著增大,3种植物叶片磷含量显著增加,白羊草和长芒草叶片氮含量显著降低;100 kg N·hm-2·a-1处理下,施磷后白羊草和长芒草叶长、达乌里胡枝子叶宽显著增大,三者叶片磷含量显著增加,白羊草叶片氮含量显著降低.综上表明,3个优势种植物叶片功能性状对短期氮磷添加的响应存在明显差异,这些差异与物种属性和施肥水平有关,不同优势种对氮磷添加响应的差异对维持草地群落多样性和稳定性具有重要作用.  相似文献   

18.
为阐释不同污染程度下城市绿化植物吸滞PM2.5机理、解析污染物来源,应用气溶胶再发生器定量测定长沙市常见的2种园林绿化树种(桂花和香樟)植物叶片PM2.5吸附量,同时应用原子力显微镜(AFM)观察了不同污染区(交通区、文教区、清洁区)植被的叶表面微形态特征,使用离子色谱仪测定样品中水溶性离子含量.结果表明: 污染程度与植物叶表面PM2.5吸附量呈正相关,不同植物单位叶面积PM2.5吸附量全年均值表现为交通区(0.56±0.04 μg·cm-2)>文教区(0.48±0.06 μg·cm-2)>清洁区(0.33±0.02 μg·cm-2),植物单位叶面积PM2.5吸附量季节变化为冬季(0.70±0.10 μg·cm-2)>春季(0.43±0.14 μg·cm-2)>秋季(0.39±0.12 μg·cm-2)>夏季(0.31±0.09 μg·cm-2),桂花的单位叶面积PM2.5吸附量大于香樟;污染程度轻的区域的植物叶片比较光滑,污染程度重的区域的叶片较粗糙,植物粗糙度排序为交通区(195.45±16.09 nm)>文教区(176.99±8.45 nm)>清洁区(131.88±12.98 nm);不同污染程度地区PM2.5离子含量均表现为冬季最大,其次是春季和秋季,夏季最低;3个污染区PM2.5离子成分均以Na+、NH4+、Cl-和Br-这4种离子为主,不同程度污染区PM2.5污染均以移动源污染为主.  相似文献   

19.
为阐释不同污染程度下城市绿化植物吸滞PM2.5机理、解析污染物来源,应用气溶胶再发生器定量测定长沙市常见的2种园林绿化树种(桂花和香樟)植物叶片PM2.5吸附量,同时应用原子力显微镜(AFM)观察了不同污染区(交通区、文教区、清洁区)植被的叶表面微形态特征,使用离子色谱仪测定样品中水溶性离子含量.结果表明: 污染程度与植物叶表面PM2.5吸附量呈正相关,不同植物单位叶面积PM2.5吸附量全年均值表现为交通区(0.56±0.04 μg·cm-2)>文教区(0.48±0.06 μg·cm-2)>清洁区(0.33±0.02 μg·cm-2),植物单位叶面积PM2.5吸附量季节变化为冬季(0.70±0.10 μg·cm-2)>春季(0.43±0.14 μg·cm-2)>秋季(0.39±0.12 μg·cm-2)>夏季(0.31±0.09 μg·cm-2),桂花的单位叶面积PM2.5吸附量大于香樟;污染程度轻的区域的植物叶片比较光滑,污染程度重的区域的叶片较粗糙,植物粗糙度排序为交通区(195.45±16.09 nm)>文教区(176.99±8.45 nm)>清洁区(131.88±12.98 nm);不同污染程度地区PM2.5离子含量均表现为冬季最大,其次是春季和秋季,夏季最低;3个污染区PM2.5离子成分均以Na+、NH4+、Cl-和Br-这4种离子为主,不同程度污染区PM2.5污染均以移动源污染为主.  相似文献   

20.
为了研究芦苇在黄河三角洲潮水和淡水两种生境条件下的生长差异, 特别是根系生态特征差异, 分别在潮水区和淡水区选取长势均匀的芦苇群落, 测量不同土层电导率、pH值, 芦苇株高、密度、茎叶及不同土层主根、须根生物量、离子含量等指标。结果表明, 两个区域的表层土壤(0-10 cm)电导率均大于下层土壤, 并在20-30 cm土层处电导率测得最小值, 而在更深的土壤呈现出随土层深度增加, 电导率上升、pH值下降的趋势。潮水区芦苇的平均株密度和株高分别为(20.80±5.93) 株·m-2, (35.70±16.01) cm, 淡水区芦苇的平均株密度和株高分别为(309.60±39.15) 株·m-2, (91.48±13.09) cm。在生物量分配上, 潮水区芦苇的主根、须根、茎、叶生物量分配比例分别是79.70%、11.88%、6.79%和1.64%, 而淡水区芦苇在这四个部位生物量分配比例分别是66.77%、8.76%、18.54%和5.92%。淡水区芦苇主根生物量主要集中在0-30 cm土层, 须根生物量主要集中在0-10 cm土层(68.18±38.99) g·m-2; 潮水区芦苇主根生物量主要集中在20-30 cm土层(146.57±109.94) g·m-2。离子含量结果表明, 潮水区芦苇主根平均Na+和K+含量分别为(6.38±1.56) mg·g-1和(1.08±0.17) mg·g-1 , 并且Na+与Cl-分布呈极显著正相关(P<0.01)。淡水区芦苇主根这两种离子平均含量分别为(2.82±0.56) mg·g-1和(3.93±1.10) mg·g-1 。以上结果表明芦苇能够改变株高、密度、各部位生物量分配比例以及离子分布来适应不同水盐环境, 这也是芦苇能够在高盐环境下长期生存的适应机制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号