首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis plays an important role in controlling germ cell numbers and restricting abnormal cell proliferation during spermatogenesis. The tumor suppressor protein, p53, is highly expressed in the testis, and is known to be involved in apoptosis, which suggests that it is one of the major causes of germ cell loss in the testis. Mice that are c-kit/SCF mutant (Sl/Sld) and cryptorchid show similar testicular phenotypes; they carry undifferentiated spermatogonia and Sertoli cells in their seminiferous tubules. To investigate the role of p53-dependent apoptosis in infertile testes, we transplanted p53-deficient spermatogonia that were labeled with enhanced green fluorescence protein into cryptorchid and Sl/Sld testes. In cryptorchid testes, transplanted p53-deficient spermatogonia differentiated into spermatocytes, but not into haploid spermatids. In contrast, no differentiated germ cells were observed in Sl/Sld mutant testes. These results indicate that the mechanism of germ cell loss in the c-kit/SCF mutant is not dependent on p53, whereas the apoptotic mechanism in the cryptorchid testis is quite different (i.e., although the early stage of differentiation of spermatogonia and the meiotic prophase is dependent on p53-mediated apoptosis, the later stage of spermatids is not).  相似文献   

2.
Tumor suppression by Ink4a-Arf: progress and puzzles   总被引:34,自引:0,他引:34  
  相似文献   

3.
In male germ cells the repair of DNA double strand breaks (DSBs) differs from that described for somatic cell lines. Irradiation induced immunofluorescent foci (IRIF's) signifying a double strand DNA breaks, were followed in spermatogenic cells up to 16 h after the insult. Foci were characterised for Mdc1, 53BP1 and Rad51 that always were expressed in conjecture with gamma-H2AX. Subsequent spermatogenic cell types were found to have different repair proteins. In early germ cells up to the start of meiotic prophase, i.e. in spermatogonia and preleptotene spermatocytes, 53BP1 and Rad51 are available but no Mdc1 is expressed in these cells before and after irradiation. The latter might explain the radiosensitivity of spermatogonia. Spermatocytes from shortly after premeiotic S-phase till pachytene in epithelial stage IV/V express Mdc1 and Rad51 but no 53BP1 which has no role in recombination involved repair during the early meiotic prophase. Mdc1 is required during this period as in Mdc1 deficient mice all spermatocytes enter apoptosis in epithelial stage IV when they should start mid-pachytene phase of the meiotic prophase. From stage IV mid pachytene spermatocytes to round spermatids, Mdc1 and 53BP1 are expressed while Rad51 is no longer expressed in the haploid round spermatids. Quantifying foci numbers of gamma-H2AX, Mdc1 and 53BP1 at various time points after irradiation revealed a 70% reduction after 16 h in pachytene and diplotene spermatocytes and round spermatids. Although the DSB repair efficiency is higher then in spermatogonia where only a 40% reduction was found, it still does not compare to somatic cell lines where a 70% reduction occurs in 2 h. Taken together, DNA DSBs repair proteins differ for the various types of spermatogenic cells, no germ cell type possessing the complete set. This likely leads to a compromised efficiency relative to somatic cell lines. From the evolutionary point of view it may be an advantage when germ cells die from DNA damage rather than risk the acquisition of transmittable errors made during the repair process.  相似文献   

4.
p19(Ink4d) is a member of the INK4 family of cyclin-dependent kinase inhibitors, which are important negative regulators of the G1-phase cyclin-dependent kinases CDK4 and CDK6. On a mixed C57BL/6 x 129P2/OlaHsd background, mice deficient for p19(Ink4d) exhibited defects in male reproductive function including testicular atrophy, alteration in serum follicle stimulating hormone, qualitative increase in germ cell apoptosis, and delayed kinetics of meiotic prophase markers (Zindy et al., 2001. Mol Cell Biol 21:3244-3255; Zindy et al., 2000. Mol Cell Biol 20:372-378). In this study, a quantitative assessment of these aspects of reproductive capacity demonstrated relatively mild deficits in p19(Ink4d-/-) males compared to controls. These effects did not dramatically worsen in older males although some seminiferous tubule defects were observed. Following marker-assisted backcrossing into the C57BL/6 background, p19(Ink4d-/-) males did not display defects in testis weights, sperm numbers, serum FSH, germ cell apoptosis, or kinetics of selected meiotic prophase markers. These studies indicate that a reduction in Ink4 family function by the loss of p19(Ink4d) is sufficient to induce mild reproductive defects in male mice with a mixed genetic background, but not in the C57BL/6 genetic background.  相似文献   

5.
The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/-) and Arf(+/-) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/-) and Arf(+/-) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/-) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/-) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.  相似文献   

6.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

7.
Male mice lacking both the Ink4c and Ink4d genes, which encode two inhibitors of D-type cyclin-dependent kinases (Cdks), are infertile, whereas female fecundity is unaffected. Both p18(Ink4c) and p19(Ink4d) are expressed in the seminiferous tubules of postnatal wild-type mice, being largely confined to postmitotic spermatocytes undergoing meiosis. Their combined loss is associated with the delayed exit of spermatogonia from the mitotic cell cycle, leading to the retarded appearance of meiotic cells that do not properly differentiate and instead undergo apoptosis at an increased frequency. As a result, mice lacking both Ink4c and Ink4d produce few mature sperm, and the residual spermatozoa have reduced motility and decreased viability. Whether or not Ink4d is present, animals lacking Ink4c develop hyperplasia of interstitial testicular Leydig cells, which produce reduced levels of testosterone. The anterior pituitary of fertile mice lacking Ink4c or infertile mice doubly deficient for Ink4c and Ink4d produces normal levels of luteinizing hormone (LH). Therefore, the failure of Leydig cells to produce testosterone is not secondary to defects in LH production, and reduced testosterone levels do not account for infertility in the doubly deficient strain. By contrast, Ink4d-null or double-null mice produce elevated levels of follicle-stimulating hormone (FSH). Because Ink4d-null mice are fertile, increased FSH production by the anterior pituitary is also unlikely to contribute to the sterility observed in Ink4c/Ink4d double-null males. Our data indicate that p18(Ink4c) and p19(Ink4d) are essential for male fertility. These two Cdk inhibitors collaborate in regulating spermatogenesis, helping to ensure mitotic exit and the normal meiotic maturation of spermatocytes.  相似文献   

8.
Senescence of cultured cells involves activation of the p19Arf-p53 and the p16Ink4a-Rb tumor suppressor pathways. This, together with the observation that p19Arf and p16Ink4a expression increases with age in many tissues of humans and rodents, led to the speculation that these pathways drive in vivo senescence and natural aging. However, it has been difficult to test this hypothesis using a mammalian model system because inactivation of either of these pathways results in early death from tumors. One approach to bypass this problem would be to inactivate these pathways in a murine segmental progeria model such as mice that express low amounts of the mitotic checkpoint protein BubR1 (BubR1 hypomorphic mice). These mice have a five-fold reduced lifespan and develop a variety of early-aging associated phenotypes including cachetic dwarfism, skeletal muscle degeneration, cataracts, arterial stiffening, (subcutaneous) fat loss, reduced stress tolerance and impaired wound healing. Importantly, BubR1 hypomorphism elevates both p16Ink4a and p19Arf expression in skeletal muscle and fat. Inactivation of p16Ink4a in BubR1 mutant mice delays both cellular senescence and aging specifically in these tissues. Surprisingly, however, inactivation of p19Arf has the opposite effect; it exacerbates in vivo senescence and aging in skeletal muscle and fat. These mouse studies suggest that p16Ink4a is indeed an effector of aging and in vivo senescence, but p19Arf an attenuator. Thus, the role of the p19Arf-p53 pathway in aging and in vivo senescence seems far more complex than previously anticipated.  相似文献   

9.
All components of the double-stranded DNA break (DSB) repair complex DNA-dependent protein kinase (DNA-PK), including Ku70, Ku86, and DNA-PK catalytic subunit (DNA-PKcs), were found in the radiosensitive spermatogonia. Although p53 induction was unaffected, spermatogonial apoptosis occurred faster in the irradiated DNA-PKcs-deficient scid testis. This finding suggests that spermatogonial DNA-PK functions in DNA damage repair rather than p53 induction. Despite the fact that early spermatocytes lack the Ku proteins, spontaneous apoptosis of these cells occurred in the scid testis. The majority of these apoptotic spermatocytes were found at stage IV of the cycle of the seminiferous epithelium where a meiotic checkpoint has been suggested to exist. Meiotic synapsis and recombination during the early meiotic prophase induce DSBs, which are apparently less accurately repaired in scid spermatocytes that then fail to pass the meiotic checkpoint. The role for DNA-PKcs during the meiotic prophase differs from that in mitotic cells; it is not influenced by ionizing radiation and is independent of the Ku heterodimer.  相似文献   

10.
The proteins encoded by the Ink4/Arf locus, p16Ink4a, p19Arf and p15Ink4b are major tumour suppressors that oppose aberrant mitogenic signals. The expression levels of the locus are progressively increased during aging and genome-wide association studies have linked the locus to a number of aging-associated diseases and frailty in humans. However, direct measurement of the global impact of the Ink4/Arf locus on organismal aging and longevity was lacking. In this work, we have examined the fertility, cancer susceptibility, aging and longevity of mice genetically modified to carry one ( Ink4/Arf -tg) or two ( Ink4/Arf -tg/tg) intact additional copies of the locus. First, increased gene dosage of Ink4/Arf impairs the production of male germ cells, and in the case of Ink4/Arf -tg/tg mice results in a Sertoli cell-only-like syndrome and a complete absence of sperm. Regarding cancer, there is a lower incidence of aging-associated cancer proportional to the Ink4/Arf gene dosage. Interestingly, increased Ink4/Arf gene dosage resulted in lower scores in aging markers and in extended median longevity. The increased survival was also observed in cancer-free mice indicating that cancer protection and delayed aging are separable activities of the Ink4/Arf locus. In contrast to these results, mice carrying one or two additional copies of the p53 gene ( p53 -tg and p53 -tg/tg) had a normal longevity despite their increased cancer protection. We conclude that the Ink4/Arf locus has a global anti-aging effect, probably by favouring quiescence and preventing unnecessary proliferation.  相似文献   

11.
DNA double-strand breaks and gamma-H2AX signaling in the testis   总被引:6,自引:0,他引:6  
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated at serine 139 and forms gamma-H2AX foci at the sites of damage. These foci then play a role in recruiting DNA repair and damage-response factors and changing chromatin structure to accurately repair the damaged DNA. These gamma-H2AX foci appear in response to irradiation and genotoxic stress and during V(D)J recombination and meiotic recombination. Independent of irradiation, gamma-H2AX occurs in all intermediate and B spermatogonia and in preleptotene to zygotene spermatocytes. Type A spermatogonia and round spermatids do not exhibit gamma-H2AX foci but show homogeneous nuclear gamma-H2AX staining, whereas in pachytene spermatocytes gamma-H2AX is only present in the sex vesicle. In response to ionizing radiation, gamma-H2AX foci are generated in spermatogonia, spermatocytes, and round spermatids. In irradiated spermatogonia, gamma-H2AX interacts with p53, which induces spermatogonial apoptosis. These events are independent of the DNA-dependent protein kinase (DNA-PK). Irradiation-independent nuclear gamma-H2AX staining in leptotene spermatocytes demonstrates a function for gamma-H2AX during meiosis. gamma-H2AX staining in intermediate and B spermatogonia, preleptotene spermatocytes, and sex vesicles and round spermatids, however, indicates that the function of H2AX phosphorylation during spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA double-strand breaks.  相似文献   

12.
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  相似文献   

13.
Epithelial tumors of the pancreas exhibit a wide spectrum of histologies with varying propensities for metastasis and tissue invasion. The histogenic relationship among these tumor types is not well established; moreover, the specific role of genetic lesions in the progression of these malignancies is largely undefined. Transgenic mice with ectopic expression of transforming growth factor alpha (TGF-alpha) in the pancreatic acinar cells develop tubular metaplasia, a potential premalignant lesion of the pancreatic ductal epithelium. To evaluate the cooperative interactions between TGF-alpha and signature mutations in pancreatic tumor genesis and progression, TGFalpha transgenic mice were crossed onto Ink4a/Arf and/or p53 mutant backgrounds. These compound mutant mice developed a novel pancreatic neoplasm, serous cystadenoma (SCA), presenting as large epithelial tumors bearing conspicuous gross and histological resemblances to their human counterpart. TGFalpha animals heterozygous for both the Ink4a/Arf and the p53 mutation showed a dramatically increased incidence of SCA, indicating synergistic interaction of these alleles. Inactivation of p16(Ink4a) by loss of heterozygosity, intragenic mutation, or promoter hypermethylation was a common feature in these SCAs, and correspondingly, none of the tumors expressed wild-type p16(Ink4a). All tumors sustained loss of p53 or Arf, generally in a mutually exclusive fashion. The tumor incidence data and molecular profiles establish a pathogenic role for the dual inactivation of p16(Ink4a) and p19(Arf)-p53 in the development of SCA in mice, demonstrating that p16(Ink4a) is a murine tumor suppressor. This genetically defined model provides insights into the molecular pathogenesis of SCA and serves as a platform for dissection of cell-specific programs of epithelial tumor suppression.  相似文献   

14.
15.
Expression of p16(Ink4a) and p19(Arf) increases with age in both rodent and human tissues. However, whether these tumour suppressors are effectors of ageing remains unclear, mainly because knockout mice lacking p16(Ink4a) or p19(Arf) die early of tumours. Here, we show that skeletal muscle and fat, two tissues that develop early ageing-associated phenotypes in response to BubR1 insufficiency, have high levels of p16(Ink4a) and p19(Arf). Inactivation of p16(Ink4a) in BubR1-insufficient mice attenuates both cellular senescence and premature ageing in these tissues. Conversely, p19(Arf) inactivation exacerbates senescence and ageing in BubR1 mutant mice. Thus, we identify BubR1 insufficiency as a trigger for activation of the Cdkn2a locus in certain mouse tissues, and demonstrate that p16(Ink4a) is an effector and p19(Arf) an attenuator of senescence and ageing in these tissues.  相似文献   

16.
Choi YJ  Ok DW  Kwon DN  Chung JI  Kim HC  Yeo SM  Kim T  Seo HG  Kim JH 《FEBS letters》2004,575(1-3):41-51
Male germ cell apoptosis has been extensively explored in rodents. In contrast, very little is known about the susceptibility of developing germ cells to apoptosis in response to busulfan treatment. Spontaneous apoptosis of germ cells is rarely observed in the adult mouse testis, but under the experimental conditions described here, busulfan-treated mice exhibited a marked increase in apoptosis and a decrease in testis weight. TdT-mediated dUTP-X nicked end labeling analysis indicates that at one week following busulfan treatment, apoptosis was confined mainly to spermatogonia, with lesser effects on spermatocytes. The percentage of apoptosis-positive tubules and the apoptotic cell index increased in a time-dependent manner. An immediate effect was observed in spermatogonia within one week of treatment, and in the following week, secondary effects were observed in spermatocytes. RT-PCR analysis showed that expression of the spermatogonia-specific markers c-kit and Stra 8 was reduced but that Gli I gene expression remained constant, which is indicative of primary apoptosis of differentiating type A spermatogonia. Three and four weeks after busulfan treatment, RAD51 and FasL expression decreased to nearly undetectable levels, indicating that meiotic spermatocytes and post-meiotic cells, respectively, were lost. The period of germ cell depletion did not coincide with increased p53 or Fas/FasL expression in the busulfan-treated testis, although p110Rb phosphorylation and PCNA expression were inhibited. These data suggest that increased depletion of male germ cells in the busulfan-treated mouse is mediated by loss of c-kit/SCF signaling but not by p53- or Fas/FasL-dependent mechanisms. Spermatogonial stem cells may be protected from cell death by modulating cell cycle signaling such that E2F-dependent protein expression, which is critical for G1 phase progression, is inhibited.  相似文献   

17.
Correct function of spermatogonia is critical for the maintenance of spermatogenesis throughout life, but the cellular pathways regulating undifferentiated spermatogonia proliferation, differentiation, and survival are only partially known. We show here that long glucocorticoid-induced leucine zipper (L-GILZ) is highly expressed in spermatogonia and primary spermatocytes and controls spermatogenesis. Gilz deficiency in knock-out (gilz KO) mice leads to a complete loss of germ cell lineage within first cycles of spermatogenesis, resulting in male sterility. Spermatogenesis failure is intrinsic to germ cells and is associated with increased proliferation and aberrant differentiation of undifferentiated spermatogonia and with hyperactivity of Ras signaling pathway as indicated by an increase of ERK and Akt phosphorylation. Spermatogonia differentiation does not proceed beyond the prophase of the first meiotic division due to massive apoptosis associated with accumulation of unrepaired chromosomal damage. These results identify L-GILZ as a novel important factor for undifferentiated spermatogonia function and spermatogenesis.  相似文献   

18.
Pten deficiency depletes hematopoietic stem cells (HSCs) but expands leukemia-initiating cells, and the mTOR inhibitor, rapamycin, blocks these effects. Understanding the opposite effects of mTOR activation on HSCs versus leukemia-initiating cells could improve antileukemia therapies. We found that the depletion of Pten-deficient HSCs was not caused by oxidative stress and could not be blocked by N-acetyl-cysteine. Instead, Pten deletion induced, and rapamycin attenuated, the expression of p16(Ink4a) and p53 in HSCs, and p19(Arf) and p53 in other hematopoietic cells. p53 suppressed leukemogenesis and promoted HSC depletion after Pten deletion. p16(Ink4a) also promoted HSC depletion but had a limited role suppressing leukemogenesis. p19(Arf) strongly suppressed leukemogenesis but did not deplete HSCs. Secondary mutations attenuated this tumor suppressor response in some leukemias that arose after Pten deletion. mTOR activation therefore depletes HSCs by a tumor suppressor response that is attenuated by secondary mutations in leukemogenic clones.  相似文献   

19.
20.
The status of tumor suppressor genes (TSGs) relevant to human malignant mesothelioma (HMM) pathogenesis was examined in cultures of mesothelioma cells from tumoral ascites developed in mice exposed to asbestos (asb) fibers. The status of the respective hortologous human genes was also investigated in 12 HMM cell cultures. Eleven primary cultures from mice hemizygous for N?2 (asb-Nf2KO3/+) and 4 wild type counterparts (asb-Nf2+/+) were analyzed for mutations in Nf2, p16/Cdkn2a, p19/Arf and Trp53 genes and protein expression of p15/Cdkn2b and Cdk4. TSG alterations in both mouse and human mesothelioma cells consisted in frequent inactivation of p16/Cdkn2a, p19/Arf (or P14/ARF) and p15/Cdkn2b, co-inactivation of p16/Cdkn2a and p15/Cdkn2b and low rate of Trp53 mutations in both asb-Nf2KO3/+ and asb-Nf2+/+ mesothelioma cells. In both mouse and human mesothelioma cells, inactivation of the hortologous genes p16/Cdkn2a or P16/CDKN2A was due to deletions at the Ink4/Arf locus encompassing p19/Arf or P14/ARF, respectively. Loss of heterozygosity at the Nf2 locus was detected in 10 of 11 asb-Nf2KO3/+ cultures and Nf2 gene rearrangement in one asb-Nf2+/+ culture. These data show that the profile of TSG alterations in asbestos-induced mesothelioma is similar in mice and humans. Thus, the mouse mesothelioma model could be useful for human risk assessment, taking into account interindividual variations in genetic sensitivity to carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号