首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protease, freesia protease (FP)-A, was purified to electrophoretic homogeneity from regular freesia (Freesia reflacta) corms in harvest time. The M r of FP-A was estimated to be 24 k by SDS-PAGE. The optimum pH of the enzyme was 8.0 using a casein substrate. These enzymes were strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethane-sulfonylfluoride and EDTA. These results indicate that FP-A belongs to the cysteine proteases. The amino terminal sequence of FP-A was similar to that of papain, and the sequences was regarded to the conservative residues of cysteine protease. From the hydrolysis of peptidyl-pNAs, the specificity of FP-A was found to be broad. It was thought that FP-A was a new protease from freesia corms.  相似文献   

2.
A protease, freesia protease (FP)-A, was purified to electrophoretic homogeneity from regular freesia (Freesia reflacta) corms in harvest time. The Mr of FP-A was estimated to be 24 k by SDS-PAGE. The optimum pH of the enzyme was 8.0 using a casein substrate. These enzymes were strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethane-sulfonylfluoride and EDTA. These results indicate that FP-A belongs to the cysteine proteases. The amino terminal sequence of FP-A was similar to that of papain, and the sequences was regarded to the conservative residues of cysteine protease. From the hydrolysis of peptidyl-p-NAs, the specificity of FP-A was found to be broad. It was thought that FP-A was a new protease from freesia corms.  相似文献   

3.
Freesia protease (FP)-A has been found in regular freesia corms (Kaneda et al., Biosci. Biotechnol. Biochem. 61 (1997) 1554). New corms were generated from original corms that were kept for several months at 4°C. In this study, two proteases (FP-B and FP-C) have been found to new corms kept for 6 months at 4°C, and have increased during new corms enlargement.

 FPs were purified from the extracts of new corms, and the Mr of those were 24k (A), 25k (B), and 24.5k (C) by SDS-PAGE, respectively.

 The N-terminal sequences of FPs were identical to those of papain with respect to the conservative residues of cysteine protease. The sequence of FP-A was identical with those of FP-B within 20 residues of its N-terminal. It may be possible that FP-B was produced by some post-translational modifications from FP-A during the chilling. On the other hand, N-terminal sequence of FP-C was different from those of FP-A and FP-B. It was explained that FP-C was a new protease of freesia corm.  相似文献   


4.
The enzymatic properties of phytolacain G, a protease isolated from green fruit of pokeweed, were compared with those of phytolacain R, a protease obtained from ripe fruit. The optimum pH of phytolacain G was 7.5-8.0 at 37°C using casein as the substrate. The enzyme was strongly inhibited by iodoacetic acid and p-chloromercuribenzoic acid, but not by diisopropyl fluorophosphate or EDTA. These results indicated that phytolacain G was a cysteine protease, like phytolacain R. Nine sites of oxidized insulin B-chain were cleaved by phytolacain G during 20 h of hydrolysis. The six sites cleaved by phytolacain G were also cleaved by phytolacain R. The substrate specificity of phytolacain G was broad, but the preference for hydrophobic residues at the P2 position was similar to the substrate specificity of papain. The amino-terminal sequence of phytolacain G was not identical with that of phytolacain R; however, the amino acid residues conserved in the papain family were also conserved in this enzyme.  相似文献   

5.
A protease has been purified from sarcocarp of musk melon, Cucumis melo ssp. melo var. reticulatus Naud. Earl’s Favourite. The protease was mostly present in the placenta part of the fruit and next in the inside mesocarp. The molecular mass of the enzyme was estimated to be about 62kDa on SDS-PAGE. The enzyme had a carbohydrate moiety. The optimum pH of the enzyme was 11 at 35°C using casein as a substrate. The enzyme was stable between pH 6 and 11. The enzyme was strongly inhibited by diisopropyl fluorophosphate, but was not inhibited by EDTA or cysteine protease inhibitors. From the digestion of Ala-Ala-Pro-X-pNA (X = Phe, Leu, Val, Ala, Gly, Lys, Glu, Pro, and diaminopropionic acid (Dap) substrates the specificity of the protease was found to be approximately broad, but the preferential cleavage sites were C-terminal sites of hydrophobic or acidic amino acid residues at P, position. It was proved that the enzymatic properties of musk melon protease are similar to those of cucumisin [EC 3.4.21.25]. The enzyme was not inhibited by typical proteinous inhibitors such as STI or ovomucoid. Therefore, this enzyme seems to be a useful protease for the food industries.  相似文献   

6.
The specificity of a rennin-like enzyme from Mucor pusillus Lindt was determined using synthetic peptides and oxidized insulin B chain as substrates. The results indicate that the enzyme exhibits specificity against aromatic, bulky or hydrophobic amino acid residues at both sides of the splitting point. The susceptibility of peptide substrates increases with the increase of their molecular size, indicating the significance of secondary interaction for hydrolysis. Z-tetrapeptides such as (the arrows show the bond split) are found as efficient substrates for the enzyme. The main points of cleavage in oxidized insulin B chain are; Phe-Val (1–2), Ala-Leu (14–15), Leu-Tyr (15–16), Tyr-Leu (16–17), and Phe-Phe (24–25).

The specificity of the M. pusillus enzyme is almost identical with that of the rennin-like enzyme from Mucor miehei, and similar to those of usual acid proteinases possessing tryp- sinogen activating ability, except that the latter enzymes show specificity against basic amino acid residues at the carbonyl-side of the splitting point.  相似文献   

7.
Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.  相似文献   

8.
Action of human liver cathepsin B on the oxidized insulin B chain.   总被引:3,自引:3,他引:0       下载免费PDF全文
The lysosomal cysteine proteinase cathepsin B (from human liver) was tested for its peptide-bond specificity against the oxidized B-chain of insulin. Sixteen peptide degradation products were separated by high-pressure liquid chromatography and thin-layer chromatography and were analysed for their amino acid content and N-terminal amino acid residue. Five major and six minor cleavage sites were identified; the major cleavage sites were Gln(4)-His(5), Ser(9)-His(10), Glu(13)-Ala(14), Tyr(16)-Leu(17) and Gly(23)-Phe(24). The findings indicate that human cathepsin B has a broad specificity, with no clearly defined requirement for any particular amino acid residues in the vicinity of the cleavage sites. The enzyme did not display peptidyldipeptidase activity with this substrate, and showed a specificity different from those reported for two other cysteine proteinases, papain and rat cathepsin L.  相似文献   

9.
Procerain B, a novel cysteine protease (endopeptidase) isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U), a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed.  相似文献   

10.
Here we report the hydrolytic behavior of recombinant YFV NS2B/NS3 protease against FRET substrates mimicking the prime and non-prime region of the natural polyprotein cleavage sites. While the P2-P′1 motif is the main factor associated with the catalytic efficiency of Dengue (DV) and West Nile Virus (WNV) protease, we show that the kcat/Km of YFV NS2B/NS3 varied by more than two orders of magnitude, despite the presence of the same motif in all natural substrates. The catalytic significance of this homogeneity – a unique feature among worldwide prominent flavivirus – was kinetically analyzed using FRET peptides containing all possible combinations of two and three basic amino acids in tandem, and Arg and Lys residues produced distinct effects on kcat/Km. The parallel of our data with those obtained in vivo by Chambers et al. (1991) restrains the idea that these sites co-evolved with the NS2B/NS3 protease to promote highly efficient hydrolysis and supports the notion that secondary substrate interaction distant from cleavage sites are the main factor associated with the different hydrolytic rates on YFV NS2B-NS3pro natural substrates.  相似文献   

11.
A crystalline alkaline protease was prepared from B. amylosacchariticus, which was isolated as a strain of saccharogenic α-amylase-producing Bacillus subtilis. The enzyme was most active at pH values between 10.3 and 10.7 towards casein and was stable at pH values from 6 to 11 on twenty hour incubation at 30°C. Calcium ions were effective to stabilize the enzyme especially at higher temperatures. The enzyme was markedly inactivated by DFP as well as protease inhibitor from potato and slightly by surface active agents, but not affected by sulfhydryl reagents and divalent metal ions except Hg++ .Hemoglobin was the best substrate for the enzyme and more than 20% of the peptide bonds were hydrolyzed. Of numerous synthetic peptides tested, only the two compounds, and , were found to be hydrolyzed. A cyclic peptide, gramicidin S, was split by the enzyme only at the peptide bond of -l-valyl-l-ornithyl-. Methyl n-butyrate and tributyrin were also good substrates for the alkaline protease obtained here.  相似文献   

12.
A cysteine protease, phytolacain R from full-growth greenish fruits of pokeweed, Phytolacca americana L, was purified to electrophoretic homogeneity by a simple purification procedure employing CM-Sepharose ion-exchange chromatography. The enzyme was present in low content in the young fruits about 50 d after flowering but gradually accumulated in growing fruits. Its molecular mass was estimated to be ca. 23 kDa by SDS-PAGE, and its sugar content was zero. Its amino acid sequence was established by automated sequence analysis of the peptides obtained by cleavage with Achromobacter protease I, chymotrypsin, trypsin, and cyanogen bromide. The enzyme is composed of 218 amino acid residues, of which it shares 110 residues (50%) with papain, 104 (47%) with actinidain, and 87 (40%) with stem bromelain. The amino acid residues forming the substrate-binding the S2 pocket of papain, Tyr61, Tyr67, Pro68, Trp69, Val133, and Phe207, were predicted to be replaced by Gly, Trp, Met, His, Ala, and Met in phytolacain R, respectively. As a consequence of these substitutions, the S2 pocket is expected to be less hydrophobic in phytolacain R than in papain.  相似文献   

13.
The coronavirus 3C-like (3CL) protease, a cysteine protease, plays an important role in viral infection and immune escape. However, there is still a lack of effective tools for determining the cleavage sites of the 3CL protease. This study systematically investigated the diversity of the cleavage sites of the coronavirus 3CL protease on the viral polyprotein, and found that the cleavage motif were highly conserved for viruses in the genera of Alphacoronavirus, Betacoronavirus and Gammacoronavirus. Strong residue preferences were observed at the neighboring positions of the cleavage sites. A random forest (RF) model was built to predict the cleavage sites of the coronavirus 3CL protease based on the representation of residues in cleavage motifs by amino acid indexes, and the model achieved an AUC of 0.96 in cross-validations. The RF model was further tested on an independent test dataset which were composed of cleavage sites on 99 proteins from multiple coronavirus hosts. It achieved an AUC of 0.95 and predicted correctly 80% of the cleavage sites. Then, 1,352 human proteins were predicted to be cleaved by the 3CL protease by the RF model. These proteins were enriched in several GO terms related to the cytoskeleton, such as the microtubule, actin and tubulin. Finally, a webserver named 3CLP was built to predict the cleavage sites of the coronavirus 3CL protease based on the RF model. Overall, the study provides an effective tool for identifying cleavage sites of the 3CL protease and provides insights into the molecular mechanism underlying the pathogenicity of coronaviruses.  相似文献   

14.
For centuries, freesia has been one of the most important crops in the floriculture industry. Here, aqua-space samples collected from entire flowers of diploid Freesia refracta, three tetrapioid freesia cuitivars, and interspecific hybrids of three tetraploid freesia cultivars were analyzed using gas chromatograph coupled with mass selective detector, in all, 75 different compounds were identified. The compounds were mainly terpenes, hydrocarbons, alcohols, fatty acid esters and aromatic class compounds. Among these, iinalool was detected from all the sweet-scented flowers except for scentless white tetraploid F. hybrida. Stable inheritance of linalool between F. hybrida and their Ft progeny was observed. Based on the present analyses, the relationship between the aroma of freesia and iinalooi was discussed.  相似文献   

15.
16.
When 10?3m cysteine solution was irradiated in the presence of glucose at the concentration of ten-fold of cysteine, the G-values of products produced from cysteine were similar to those from 10?3m cysteine solution. On the other hand, the yield of carbonyl compound from glucose was suppressed completely by interaction between cysteine and radicals which are secondarily produced from glucose.

Methionine could not suppress the yield of carbonyl compound from glucose, and, G-values of products from methionine varied in comparison with those from solution containing methionine only.

From the results using scavenger, it was concluded that oxidation to methionine sulfoxide and cleavage to α-aminobutyric acid was caused by OH and attack, respectively.  相似文献   

17.
DNA sequence analysis of the stuctural urease genes from Staphylococcus xylosus revealed that three enzyme subunits are encoded in the order of 11000, 15400 and 61000 (mol. mass), which correspond to the single polypeptide chain of jack bean urease (90800). Comparing the deduced amino acid sequence of S. xylosus urease with the amino acid sequence of jack bean urease an overall portion of 56% identical residues was found. For S. xylosus urease a subunit structure of ()4 was proposed, based on the comparison of the deduced amino acid content of the enzyme subunits with the total amino acid content of the purified enzyme. The staphylococcal enzyme contained no cysteine, as deduced from DNA sequence and confirmed by the determination of the total amino acid content in the purified enzyme. Instead of cysteine, known to be catalytically essential in the plant enzyme, and conserved among all bacterial ureases analyzed so far, threonine was found in S. xylosus. This amino acid-exchange was located within a highly conserved domain of 17 amino acids, supposed to be part of the active site. Sequence analysis of the respective region of Staphylococcus saprophyticus urease showed that it also contains threonine instead of cysteine. In contrast to jack bean urease S. xylosus urease was not affected by the SH-group inhibitor dipyridyl disulfide but was completely inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride. The presented results indicated that in these staphylococcal strains urea hydrolysis might function in a manner similar to the peptide bond cleavage by chymotrypsin.Abbreviations AA amino acid - ATZ anilino thiazolinone - DPDS dipyridyl disulfide - Kb kilobase pairs - PITC phenylisothiocyanate - PTH phenylthiohydantoin - PMSF phenylmethanesulfonyl fluoride  相似文献   

18.
A cDNA for rat cathepsin C (dipeptidylaminopeptidase I) was isolated. The deduced amino acid sequence of cathepsin C comprises 462 amino acid residues: 28 NH2-terminal residues corresponding to the signal peptide, 201 residues corresponding to the propeptide, and 233 COOH-terminal residues corresponding to the mature enzyme region. Four potential glycosylation sites were found, three located in the propeptide region, and one in the mature enzyme region. The amino acid sequence of mature cathepsin C has 39.5% identity to that of cathepsin H, 35.1% to that of cathepsin L, 30.1% to that of cathepsin B, and 33.3% to that of papain. Cathepsin C, therefore, is a member of the papain family, although its propeptide region is much longer than those of other cysteine proteinases and shows no significant amino acid sequence similarity to any other cysteine proteinase.  相似文献   

19.
A novel cathepsin L-like protease from dermestid beetle Dermestes frischii maggot guts was obtained and investigated. The protease was isolated through affinity chromatography at arginine-diasorb followed by FPLC gel-filtration at Superdex 75. Protease is active against chromogenic peptide substrates, containing Arg or Leu in P1 position and a hydrophobic residue in P2 position. PH optimum is about 4,5 and temperature optimum at 40 °C. Enzyme is inhibited completely by HgCl2 and leupeptin that prove it’s belonging to cysteine proteases of papain family.cDNA analysis of cathepsin L-like protease showed that protein sequence consists of 339 amino acid residues. Mature cysteine protease contains 219 amino acid residues corresponding to molecular mass 24027.20 Da. Residues of the active site were identified: Gln140, Cys146, His285, Asn306 and Trp308. Calculated pI is 4,73. The amino acid sequence of the cystein protease from dermestid beetle displays high structural homology with cathepsin L of other insects.  相似文献   

20.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis α-amylase signal peptide and the mature thermostable α-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable α-amylase were analyzed and the results were compared with those of the mature form of the α-amylase. It is suggesteded that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable α-amylases obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号