首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
Differentiation of CD8+ T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from the cell surface to the nucleus. In this study, we investigated the proteome of four cytotoxic T‐cell subtypes; naïve, recently activated effector, effector, and memory cells. Cells were fractionated into membrane, cytosol, soluble nuclear, chromatin‐bound, and cytoskeletal compartments. Following LC‐MS/MS analysis, identified peptides were analyzed via MaxQuant. Compartment fractionation and gel‐LC‐MS separation resulted in 2399 proteins identified in total. Comparison between the different subsets resulted in 146 significantly regulated proteins for naïve and effector cells, followed by 116 for activated, and 55 for memory cells. Besides Granzyme B signaling (for activated and/ or effector cells vs. naïve cells), the most prominent changes occurred in the TCA cycle and aspartate degradation. These changes suggest that correct balancing of metabolism is key for differentiation processes. All MS data have been deposited in the ProteomeXchange with identifier PXD001065 ( http://proteomecentral.proteomexchange.org/dataset/PXD001065 ).  相似文献   

2.
3.
Astrocytes are the most abundant cells in the CNS, but their function remains largely unknown. Characterization of the whole‐cell proteome and secretome in astrocytes would facilitate the study of their functions in various neurodegenerative diseases and astrocyte–neuron communication. To build a reference proteome, we established a C8‐D1A astrocyte proteome to a depth of 7265 unique protein groups using a novel strategy that combined two‐step digestion, filter‐aided sample preparation, StageTip‐based high pH fractionation, and high‐resolution MS. Nearly, 6000 unique protein groups were identified from conditioned media of astrocyte cultures, constituting the largest astrocyte secretome that has been reported. High‐confidence whole‐cell proteomes and secretomes are valuable resources in studying astrocyte function by label‐free quantitation and bioinformatics analysis. All MS data have been deposited in the ProteomeXchange with identifier PXD000501 ( http://proteomecentral.proteomexchange.org/dataset/PXD000501 ).  相似文献   

4.
5.
6.
This study compares the total liver proteome of inbred alcohol‐preferring line (iP) rats exposed to alcohol with iP rats without alcohol experience. Rat liver proteins were extracted using a three‐step procedure. Each of the three solutions solubilizes a different set of proteins. The extracted proteins were separated by 2‐DE. Scanned gels of two sample groups, alcohol‐exposed iP and alcohol‐naïve iP, were compared, revealing many protein spots with significantly higher or lower densities. These spots were cut from the gel, destained, and subjected to trypsin digestion and subsequent identification by LC‐MS/MS. Twenty‐four individual rats, 12 alcohol‐naïve, and 12 alcohol‐exposed, were used in this study. Two groups, each containing six naïve and six exposed animals, were created for statistical comparison. For the first group, 64 spots were observed to have statistically significant intensity differences upon alcohol exposure across all three extracts while 118 such spots were found in the second group. There were 113 unique proteins in both groups together. The majority of these proteins were enzymes. Significant changes are observed for three major metabolic pathways: glycolysis, gluconeogenesis, and fatty acid β‐oxidation. In addition, enzymes involved in protein synthesis and antioxidant activity show significant changes in abundance in response to alcohol exposure.  相似文献   

7.
Helper T cell differentiation is a key process in the regulation of adaptive immune responses. Here, mouse Th1 and Th2 cells are profiled using high‐throughput proteomics to increase the understanding of the molecular biology of Th differentiation to support the design of prophylactic and therapeutic intervention strategies for (infectious) diseases. Protein profiling of Th1/Th2 differentiated cells results in the quantification of almost 6000 proteins of which 41 are differentially expressed at FDR < 0.1, and 19 at the FDR < 0.05 level, respectively. Differential protein expression analysis identifies a number of the expected canonical Th differentiation markers, and gene set analysis using the REACTOME database and a hypergeometric test (FDR < 0.05) confirms that helper T cell pathways are the top sets that are differentially expressed. Additionally, by network analysis, many differentially expressed proteins are associated with the Th1 and Th2 pathways. Data are available via PRIDE database with identifier PXD004532.  相似文献   

8.
We examined the role of B‐1 cells in protection against Toxoplasma gondii infection using B cell‐deficient mice (μMT mice). We found that primed but not naïve B‐1 cells from wild‐type C57BL/6 mice protected B cell‐deficient recipients from challenge infection. All μMT mice transferred with primed B‐1 cells survived more than 5 months after T. gondii infection, whereas 100% of μMT mice transferred with naïve B‐1 cells succumbed by 18 days after infection. Additionally, high expression of both T help (Th) 1‐ and Th2‐type cytokines and a high level of nitric oxide production were observed in T. gondii‐infected μMT mice transferred with primed B‐1 cells. Thus, it was clearly demonstrated that B‐1 cells play an important role in host protection against T. gondii infection in μMT mice.  相似文献   

9.
We are conducting clinical trials of the E75 peptide as a vaccine in breast cancer (BrCa) patients. We assessed T cell subpopulations in BrCa patients before and after E75 vaccination and compared them to healthy controls. We obtained 17 samples of blood from ten healthy individuals and samples from 22 BrCa patients prior to vaccination. We also obtained pre- and post-vaccination samples of blood from seven BrCa patients who received the E75/GM-CSF vaccine. CD4, CD8, CD45RA, CD45RO, and CCR7 antibodies were used to analyze the CD4+ and CD8+ T cells by four-color flow cytometry. Compared to healthy individuals, BrCa patients have significantly more memory and less naïve T cells and more effector-memory CD8+ and less effector CD4+ T cells. Phenotypic differences in defined circulating CD4+ and CD8+ T cell subpopulations suggest remnants of an active immune response to tumor distinguished by a predominant memory T cell response and by untapped recruitment of naïve helper and cytotoxic T cells. E75 vaccination induced recruitment of both CD4+ and CD8+ naïve T cells while memory response remained stable. Additionally, vaccination induced global activation of all T cells, with specific enhancement of effector CD4+ T cells. E75 vaccination causes activation of both memory and naïve CD4+ and CD8+ T cells, while recruiting additional naïve CD4+ and CD8+ T cells to the overall immune response.  相似文献   

10.
The T help 1 (Th1) and Th2 cell classification have provided the framework for understanding CD4+ T cell biology and the interplay between innate and adaptive immunity for almost two decades. Recent studies have defined a previously unknown arm of the CD4+ T cell effector response, the Th17 lineage, which promises to change our understanding of immune regulation, immune pathogenesis and host defense. The factors that specify differentiation of IL‐17 producing effector T cells from naïve T cell precursors are being rapidly discovered and are providing insights into mechanisms by which signals from cells of the innate immune system guide alternative pathways of Th1, Th2, or Th17 development. In this review, we will focus on recent studies that have identified new subsets of Th cells, new insights regarding the induced generation and differentiation mechanisms of Th17 cells and immune regulatory effects. J. Cell. Physiol. 211: 273–278, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

11.
12.
13.
Drosophila melanogaster is one of the most widely used model organisms in life sciences. Mapping its proteome is of great significance for understanding the biological characteristics and tissue functions of this species. However, the comprehensive coverage of its proteome remains a challenge. Here, we describe a high‐coverage analysis of whole fly through a 1D gel electrophoresis and LC‐MS/MS approach. By combining the datasets of two types of SDS‐PAGE and two kinds of tagmata, the high‐coverage analysis resulted in the identification of 5262 genes, which correspond to 38.23% of the entire coding genes. Moreover, we found that the fly head and body have different molecular weight distributions of their proteomes when the proteins were resolved with SDS‐PAGE and image analysis of the stained gel. This phenomenon was further confirmed by both label‐free and isobaric tags for relative and absolute quantitation‐based quantitative approaches. The consistent results of the two different quantitation methods also demonstrated the stability and accuracy of the LC‐MS/MS platform. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD000454 and PXD000455 ( http://proteomecentral.proteomexchange.org/dataset/PXD000454 ; ( http://proteomecentral.proteomexchange.org/dataset/PXD000455 ).  相似文献   

14.
Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion‐mobility enhanced data‐independent label‐free LC‐MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3‐based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replicates. Identified proteins play pivotal roles in neurological and synaptic processes providing a rich resource for studies on hippocampal PSD function as well as on the pathogenesis of neuropsychiatric disorders. All MS data have been deposited in the ProteomeXchange with identifier PXD000590 ( http://proteomecentral.proteomexchange.org/dataset/PXD000590 ).  相似文献   

15.
Changes in leaf soluble proteome were explored in 3‐month‐old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1–50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked‐nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2‐DE (linear 4–7 pH gradient). Analysis of CCB‐stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC‐MS/MS. In both populations, Cu excess impacted both light‐dependent (OEE, cytochrome b6‐f complex, and chlorophyll a‐b binding protein), and ‐independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin‐NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S‐containing amino‐acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 ( http//proteomecentral.proteomexchange.org/dataset/PXD001930 ).  相似文献   

16.
Nonsmall cell lung cancer (NSCLC) accounts for 85% of lung cancers, and is subdivided into two major histological subtypes: adenocarcinoma (ADC) and squamous cell carcinoma (SCC). There is an unmet need to further subdivide NSCLC according to distinctive molecular features that may be associated with responsiveness to therapies. Four primary tumor‐derived xenograft proteomes (two‐each ADC and SCC) were quantitatively compared by using a super‐SILAC labeling approach together with ultrahigh‐resolution MS. Proteins highly differentially expressed in the two subtypes were identified, including 30 that were validated in an independent cohort of 12 NSCLC primary tumor‐derived xenograft tumors whose proteomes were quantified by an alternative, label‐free shotgun MS methodology. The 30‐protein signature contains metabolism enzymes including phosphoglycerate dehydrogenase, which is more highly expressed in SCC, as well as a comprehensive set of cytokeratins and other components of the epithelial barrier, which is therefore distinctly different between ADC and SCC. These results demonstrate the utility of the super‐SILAC method for the characterization of primary tissues, and compatibility with datasets derived from different MS‐based platforms. The validation of proteome signatures of NSCLC subtypes supports the further development and application of MS‐based quantitative proteomics as a basis for precision classifications and treatments of tumors. All MS data have been deposited in the ProteomeXchange with identifier PXD000438 ( http://proteomecentral.proteomexchange.org/dataset/PXD000438 ).  相似文献   

17.
Since the genome of Solanum lycopersicum L. was published in 2012, some studies have explored its proteome although with a limited depth. In this work, we present an extended characterization of the proteome of the tomato pericarp at its ripe red stage. Fractionation of tryptic peptides generated from pericarp proteins by off‐line high‐pH reverse‐phase phase chromatography in combination with LC‐MS/MS analysis on a Fisher Scientific Q Exactive and a Sciex Triple‐TOF 6600 resulted in the identification of 8588 proteins with a 1% FDR both at the peptide and protein levels. Proteins were mapped through GO and KEGG databases and a large number of the identified proteins were associated with cytoplasmic organelles and metabolic pathways categories. These results constitute one of the most extensive proteome datasets of tomato so far and provide an experimental confirmation of the existence of a high number of theoretically predicted proteins. All MS data are available in the ProteomeXchange repository with the dataset identifiers PXD004947 and PXD004932.  相似文献   

18.
The present study reports a comparative proteome cataloging of a bovine mastitis and a human‐associated Staphylococcus epidermidis strain with a specific focus on surfome (cell‐wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC‐MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house‐keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy‐metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein‐ and DNA‐mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 ( http://proteomecentral.proteomexchange.org/dataset/PXD000404 ).  相似文献   

19.
Sirtuins are NAD+‐dependent deacetylases that regulate a range of cellular processes. Although diverse functions of sirtuins have been proposed, those functions of SIRT6 and SIRT7 that are mediated by their interacting proteins remain elusive. In the present study, we identified SIRT6‐ and SIRT7‐interacting proteins, and compared their interactomes to investigate functional links. Our interactomes revealed 136 interacting proteins for SIRT6 and 233 for SIRT7 while confirming seven and 111 proteins identified previously for SIRT6 and SIRT7, respectively. Comparison of SIRT6 and SIRT7 interactomes under the same experimental conditions disclosed 111 shared proteins, implying related functional links. The interaction networks of interactomes indicated biological processes associated with DNA repair, chromatin assembly, and aging. Interactions of two highly acetylated proteins, nucleophosmin (NPM1) and nucleolin, with SIRT6 and SIRT7 were confirmed by co‐immunoprecipitation. NPM1 was found to be deacetylated by both SIRT6 and SIRT7. In senescent cells, the acetylation level of NPM1 was increased in conjunction with decreased levels of SIRT6 and SIRT7, suggesting that the acetylation of NPM1 could be regulated by SIRT6 and SIRT7 in the aging process. Our comparative interactomic study of SIRT6 and SIRT7 implies important functional links to aging by their associations with interacting proteins. All MS data have been deposited in the ProteomeXchange with identifiers PXD000159 and PXD000850 ( http://proteomecentral.proteomexchange.org/dataset/PXD000159 , http://proteomecentral.proteomexchange.org/dataset/PXD000850 ).  相似文献   

20.
Virtual memory T cells are foreign antigen‐inexperienced T cells that have acquired memory‐like phenotype and constitute 10–20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen‐experienced memory T cells are incompletely understood. By analyzing T‐cell receptor repertoires and using retrogenic monoclonal T‐cell populations, we demonstrate that the virtual memory T‐cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self‐reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T‐cell compartment via modulating the self‐reactivity of individual T cells. Although virtual memory T cells descend from the highly self‐reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self‐reactivity in polyclonal T cells for the generation of functional T‐cell diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号