首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang SJ  Nie AY  Zhang L  Yan GQ  Yao J  Xie LQ  Lu HJ  Yang PY 《Journal of Proteomics》2012,75(18):5797-5806
Quantification by series of b, y fragment ion pairs generated from isobaric-labeled peptides in MS2 spectra has recently been considered an accurate strategy in quantitative proteomics. Here we developed a novel MS2 quantification approach named quantitation by isobaric terminal labeling (QITL) by coupling (18)O labeling with dimethylation. Trypsin-digested peptides were labeled with two (16)O or (18)O atoms at their C-termini in H(2)(16)O or H(2)(18)O. After blocking all ε-amino groups of lysines through guanidination, the N-termini of the peptides were accordingly labeled with formaldehyde-d(2) or formaldehyde. These indistinguishable, isobaric-labeled peptides in MS1 spectra produce b, y fragment ion pairs in the whole mass range of MS2 spectra that can be used for quantification. In this study, the feasibility of QITL was first demonstrated using standard proteins. An accurate and reproducible quantification over a wide dynamic range was achieved. Then, complex rat liver samples were used to verify the applicability of QITL for large-scale quantitative analysis. Finally, QITL was applied to profile the quantitative proteome of hepatocellular carcinoma (HCC) and adjacent non-tumor liver tissues. Given its simplicity, low-cost, and accuracy, QITL can be widely applied in biological samples (cell lines, tissues, and body fluids, etc.) for quantitative proteomic research.  相似文献   

2.
The isobaric peptide termini labeling (IPTL) method is a promising strategy in quantitative proteomics for its high accuracy, while the increased complexity of MS2 spectra originated from the paired b, y ions has adverse effect on the identification and the coverage of quantification. Here, a paired ions scoring algorithm (PISA) based on Morpheus, a database searching algorithm specifically designed for high‐resolution MS2 spectra, was proposed to address this issue. PISA was first tested on two 1:1 mixed IPTL datasets, and increases in peptide to spectrum matchings, distinct peptides and protein groups compared to Morpheus itself and MASCOT were shown. Furthermore, the quantification is simultaneously performed and 100% quantification coverage is achieved by PISA since each of the identified peptide to spectrum matchings has several pairs of fragment ions which could be used for quantification. Then the PISA was applied to the relative quantification of human hepatocellular carcinoma cell lines with high and low metastatic potentials prepared by an IPTL strategy.  相似文献   

3.
Biomedical research requires protein detection technology that is not only sensitive and quantitative, but that can reproducibly measure any set of proteins in a biological system in a high throughput manner. Here we report the development and application of a targeted proteomics platform termed index-ion triggered MS2 ion quantification (iMSTIQ) that allows reproducible and accurate peptide quantification in complex mixtures. The key feature of iMSTIQ is an approach called index-ion triggered analysis (ITA) that permits the reproducible acquisition of full MS2 spectra of targeted peptides independent of their ion intensities. Accurate quantification is achieved by comparing the relative intensities of multiple pairs of fragment ions derived from isobaric targeted peptides during MS2 analysis. Importantly, the method takes advantage of the favorable performance characteristics of the LTQ-Orbitrap, which include high mass accuracy, resolution, and throughput. As such it provides an attractive targeted proteomics tool to meet the demands of systems biology research and biomarker studies.  相似文献   

4.
Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it.  相似文献   

5.
Mass spectrometers equipped with matrix‐assisted laser desorption/ionization (MALDI‐MS) require frequent multipoint calibration to obtain good mass accuracy over a wide mass range and across large numbers of samples. In this study, we introduce a new synthetic peptide mass calibration standard termed PAS‐cal tailored for MALDI‐MS based bottom‐up proteomics. This standard consists of 30 peptides between 8 and 37 amino acids long and each constructed to contain repetitive sequences of Pro, Ala and Ser as well as one C‐terminal arginine residue. MALDI spectra thus cover a mass range between 750 and 3200 m/z in MS mode and between 100 and 3200 m/z in MS/MS mode. Our results show that multipoint calibration of MS spectra using PAS‐cal peptides compares well to current commercial reagents for protein identification by PMF. Calibration of tandem mass spectra from LC‐MALDI experiments using the longest peptide, PAS‐cal37, resulted in smaller fragment ion mass errors, more matching fragment ions and more protein and peptide identifications compared to commercial standards, making the PAS‐cal standard generically useful for bottom‐up proteomics.  相似文献   

6.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

7.
Comparative proteomic approaches using isotopic labeling and MS have become increasingly popular. Conventionally quantification is based on MS or extracted ion chromatogram (XIC) signals of differentially labeled peptides. However, in these MS-based experiments, the accuracy and dynamic range of quantification are limited by the high noise levels of MS/XIC data. Here we report a quantitative strategy based on multiplex (derived from multiple precursor ions) MS/MS data. One set of proteins was metabolically labeled with [13C6]lysine and [15N4]arginine; the other set was unlabeled. For peptide analysis after tryptic digestion of the labeled proteins, a wide precursor window was used to include both the light and heavy versions of each peptide for fragmentation. The multiplex MS/MS data were used for both protein identification and quantification. The use of the wide precursor window increased sensitivity, and the y ion pairs in the multiplex MS/MS spectra from peptides containing labeled and unlabeled lysine or arginine offered more information for, and thus the potential for improving, protein identification. Protein ratios were obtained by comparing intensities of y ions derived from the light and heavy peptides. Our results indicated that this method offers several advantages over the conventional XIC-based approach, including increased sensitivity for protein identification and more accurate quantification with more than a 10-fold increase in dynamic range. In addition, the quantification calculation process was fast, fully automated, and independent of instrument and data type. This method was further validated by quantitative analysis of signaling proteins in the EphB2 pathway in NG108 cells.  相似文献   

8.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

9.
A quick isolation and identification of N‐blocked peptides from protein digest mixtures were achieved by diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles and MS. After protein digests were guanidinated and then mixed with diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles, unmodified N‐terminal peptides were covalently bound to magnetic nanoparticles, and can be removed from the mixture under magnetic field. Therefore, N‐blocked peptides could be isolated and analyzed by MALDI or ESI MS. This new strategy was demonstrated with model peptides, proteins, and the lysates of HepG2 cells.  相似文献   

10.
High‐resolution MS/MS spectra of peptides can be deisotoped to identify monoisotopic masses of peptide fragments. The use of such masses should improve protein identification rates. However, deisotoping is not universally used and its benefits have not been fully explored. Here, MS2‐Deisotoper, a tool for use prior to database search, is used to identify monoisotopic peaks in centroided MS/MS spectra. MS2‐Deisotoper works by comparing the mass and relative intensity of each peptide fragment peak to every other peak of greater mass, and by applying a set of rules concerning mass and intensity differences. After comprehensive parameter optimization, it is shown that MS2‐Deisotoper can improve the number of peptide spectrum matches (PSMs) identified by up to 8.2% and proteins by up to 2.8%. It is effective with SILAC and non‐SILAC MS/MS data. The identification of unique peptide sequences is also improved, increasing the number of human proteoforms by 3.7%. Detailed investigation of results shows that deisotoping increases Mascot ion scores, improves FDR estimation for PSMs, and leads to greater protein sequence coverage. At a peptide level, it is found that the efficacy of deisotoping is affected by peptide mass and charge. MS2‐Deisotoper can be used via a user interface or as a command‐line tool.  相似文献   

11.
A novel, MS-based approach for the relative quantification of proteins, relying on the derivatization of primary amino groups in intact proteins using isobaric tag for relative and absolute quantitation (iTRAQ) is presented. Due to the isobaric mass design of the iTRAQ reagents, differentially labeled proteins do not differ in mass; accordingly, their corresponding proteolytic peptides appear as single peaks in MS scans. Because quantitative information is provided by isotope-encoded reporter ions that can only be observed in MS/MS spectra, we analyzed the fragmentation behavior of ESI and MALDI ions of peptides generated from iTRAQ-labeled proteins using a TOF/TOF and/or a QTOF instrument. We observed efficient liberation of reporter ions for singly protonated peptides at low-energy collision conditions. In contrast, increased collision energies were required to liberate the iTRAQ label from lysine side chains of doubly charged peptides and, thus, to observe reporter ions suitable for relative quantification of proteins with high accuracy. We then developed a quantitative strategy that comprises labeling of intact proteins by iTRAQ followed by gel electrophoresis and peptide MS/MS analyses. As proof of principle, mixtures of five different proteins in various concentration ratios were quantified, demonstrating the general applicability of the approach presented here to quantitative MS-based proteomics.  相似文献   

12.
Pachl F  Fellenberg K  Wagner C  Kuster B 《Proteomics》2012,12(9):1328-1332
Isobaric tagging using reagents such as tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ) have become popular tools for mass spectrometry based quantitative proteomics. Because the peptide quantification information is collected in tandem mass spectra, the accuracy and precision of this method largely depend on the resolution with which precursor ions can be selected for the fragmentation and the specificity of the generated reporter ion. The latter can constitute an issue if near isobaric ion signals are present in such spectra because they may distort quantification results. We propose a simple remedy for this problem by identifying reporter ions via the accurate mass differences within a single tandem mass spectrum instead of applying fixed mass error tolerances for all tandem mass spectra. Our results show that this leads to unambiguous reporter ion identification and complete removal of interfering signals. This mode of data processing is easily implemented in software and offers advantages for protein quantification based on few peptides.  相似文献   

13.
N‐terminal sequencing of protonated peptides is challenging, since each b2 ion represents two sequence isomers, e.g., NE and EN. Additionally the occurrence of compositional isomers, such as NE and QD, further increases the number of isomers to four (NE, EN, QD, DQ). This leads to a subset of 13 b2 ion masses where each value represents four individual species. The b2 ions within such a quartet are characterized by the same elemental composition. To test the utility of CID for differentiation of isomeric b2 ions, the CID spectra of 52 small synthetic peptides were recorded, representing the 13 isomeric b2 ion quartets, which may be formed from unmodified amino acid residues. The CID spectra of protonated peptides containing these quartets were carefully inspected for N‐terminal sequence information. Below the m/z value of the b2 ion, individual differences were found in the b2 fragment ion signatures (neutral loss of CO, H2O, NH3, and other less common units). Recognition of N and Q in second position from the N‐terminus is based on c1 ion formation. Relative intensities of immonium ions were also used for differentiation between sequence isomers. In the complementary high‐mass regions above the m/z value of the ymax‐2 ion, individual differences were observed in the formation of ymax‐1, xmax‐1 and zmax‐1 ions, which could be correlated to the complementary low‐mass ions. In summary, de novo sequencing of the N‐terminal dipeptide motif is feasible by considering all available sequence information present in CID spectra of protonated peptides.  相似文献   

14.
N‐succinimidyloxycarbonylmethyl tris(2,4,6‐trimethoxyphenyl) phosphonium bromide (TMPP‐Ac‐OSu) reacts rapidly, mildly, and specifically with the N‐terminals of proteins and peptides. Thus, it can be developed as an ideal isotope‐coded tag to be used in quantitative proteomics. Here, we present a strategy for light and heavy TMPP‐based quantitative proteomic analysis, in which peptides in a mixture can be quantified using an on‐tip TMPP derivatization approach. To demonstrate the accuracy of this strategy, light and heavy TMPP‐labeled peptides were combined at different ratios and subsequently analyzed by LC‐MS/MS. The MS spectra and scatter plots show that peptide and protein ratios were both consistent with the mixed ratios. We observed a linear correlation between protein ratios and the predicted ratios. In comparison with SILAC method, the TMPP labeling method produced similarly accurate quantitative results with low CVs. In conclusion, our results suggest that this isotope‐coded TMPP method achieved accurate quantification and compatibility with IEF‐based separation. With the inherent advantages of TMPP derivatization, we believe that it holds great promise for future applications in quantitative proteomics analysis.  相似文献   

15.
Data‐independent acquisition (DIA) is an emerging technology for quantitative proteomics. Current DIA focusses on the identification and quantitation of fragment ions that are generated from multiple peptides contained in the same selection window of several to tens of m/z. An alternative approach is WiSIM‐DIA, which combines conventional DIA with wide‐SIM (wide selected‐ion monitoring) windows to partition the precursor m/z space to produce high‐quality precursor ion chromatograms. However, WiSIM‐DIA has been underexplored; it remains unclear if it is a viable alternative to DIA. We demonstrate that WiSIM‐DIA quantified more than 24 000 unique peptides over five orders of magnitude in a single 2 h analysis of a neuronal synapse‐enriched fraction, compared to 31 000 in DIA. There is a strong correlation between abundance values of peptides quantified in both the DIA and WiSIM‐DIA datasets. Interestingly, the S/N ratio of these peptides is not correlated. We further show that peptide identification directly from DIA spectra identified >2000 proteins, which included unique peptides not found in spectral libraries generated by DDA.  相似文献   

16.
Histone post-translational modifications (PTMs) have a fundamental function in chromatin biology, as they model chromatin structure and recruit enzymes involved in gene regulation, DNA repair, and chromosome condensation. High throughput characterization of histone PTMs is mostly performed by using nano-liquid chromatography coupled to mass spectrometry. However, limitations in speed and stochastic sampling of data dependent acquisition methods in MS lead to incomplete discrimination of isobaric peptides and loss of low abundant species. In this work, we analyzed histone PTMs with a data-independent acquisition method, namely SWATH™ analysis. This approach allows for MS/MS-based quantification of all analytes without upfront assay development and no issues of biased and incomplete sampling. We purified histone proteins from human embryonic stem cells and mouse trophoblast stem cells before and after differentiation, and prepared them for MS analysis using the propionic anhydride protocol. Results on histone H3 peptides verified that sequential window acquisition of all theoretical mass spectra could accurately quantify peptides (<9% average coefficient of variation, CV) over four orders of magnitude, and we could discriminate isobaric and co-eluting peptides (e.g. H3K18ac and H3K23ac) using MS/MS-based quantification. This method provided high sensitivity and precision, supported by the fact that we could find significant differences for remarkably low abundance PTMs such as H3K9me2S10ph (relative abundance <0.02%). We performed relative quantification for few sample peptides using different fragment ions and observed high consistency (CV <15%) between the fragments. This indicated that different fragment ions can be used independently to achieve the same peptide relative quantification. Taken together, sequential window acquisition of all theoretical mass spectra proved to be an easy-to-use MS acquisition method to perform high quality MS/MS-based quantification of histone-modified peptides.Chromatin is a highly organized and dynamic entity in cell nuclei, mostly composed of DNA and histone proteins. Its structure directly influences gene expression, DNA repair, and cell duplication events such as mitosis and meiosis (1). Histones are assembled in octamers named nucleosomes, wrapped by DNA every ∼200 base pairs. Histones are heavily modified by dynamic post-translational modifications (PTMs)1, which affect chromatin structure because of their chemical properties and their ability to recruit chromatin modifier enzymes and binding proteins (2). Moreover, histone PTMs can be inherited through cell division and thus are crucial components of epigenetic memory (3). The function of histone PTMs has been extensively studied in the last 15–20 years, and several links have been found between aberrations of histone PTM levels and development of diseases (4, 5). Such discoveries revealed the importance of histone PTMs in fine-tuning cell phenotype. Because of this, technology has been rapidly evolving to investigate histone PTM relative abundance with higher accuracy and throughput.Mass spectrometry (MS)-based strategies have continuously evolved toward higher throughput and flexibility, allowing not only identification and quantification of single histone PTMs, but also their combinatorial patterns and even characterization of the intact proteins (reviewed in (6, 7)). For histone analysis, a widely adopted workflow for nano-liquid chromatography–tandem mass spectrometry (nLC-MS/MS) includes derivatization of lysine residue side chains with propionic anhydride, proteolytic digestion with trypsin, and subsequent derivatization of peptide N termini (8, 9). Such protocol leads to generation of ArgC-like peptides (only cleaved after arginine residues) after digestion. Moreover, propionylation of N termini increases peptide hydrophobicity, thereby improving LC retention of shorter ones, and thus the MS signal. Because of the high mass accuracy, sensitivity, and the possibility to perform label-free quantification MS has become the technique of choice, outperforming antibody-based strategies, to study both known and novel global histone PTMs.Several acquisition methods have been developed for MS analysis to accomplish different needs of identification and quantification (10). The most widely adopted in shotgun or discovery proteomics is the data-dependent acquisition (DDA) mode. Such acquisition method does not require any previous knowledge about the analyte, as it automatically selects precursor ions detectable at the full scan level in a given order (commonly from the most intense) to perform MS/MS fragmentation (11). Label-free quantification is performed at the full MS scan level by integrating the area of the LC peak from an extracted ion chromatogram of the precursor mass corresponding to the given peptide. On the other hand, the selected reaction monitoring (SRM) mode is the most widely used acquisition method in targeted proteomics. Such method performs cyclic precursor ion selection, MS/MS fragmentation, and product ion selection of a list of masses input by the user. Even though the method preparation is intuitively more complex than DDA, SRM is highly popular because of the high selectivity and sensitivity, which leads to more accurate label-free quantification (12). However, both methods have inevitable drawbacks; a DDA approach cannot perform accurate quantification of isobaric and co-eluting peptides, for example, KacQLATKAAR and KQLATKacAAR (histone H3 aa 9–17), as the fragment ions should be monitored through the entire peptide peak elution to define the ratio between the two similar analytes. On the contrary, an SRM experiment prevents future data mining of unpredicted peptides, and thus such method cannot be used for any classical PTM discovery. Therefore, LC-MS/MS analysis of histone peptides is commonly performed by integrating shotgun and targeted acquisition within the same MS method (13). This method requires previous knowledge about retention time and mass of co-eluting isobaric species, and tedious manual peak integration or dedicated software to deconvolute such complex raw data. Although this mixed MS mode is a powerful approach, the targeted sequences in the method reduce the duty cycle and number of DDA MS/MS spectra that can be acquired, making it far from ideal.Data independent acquisition (DIA) modes are a third option that recently gained popularity in proteomics (14, 15). Sequential window acquisition of all theoretical mass spectra (SWATH™)-MS is a data independent workflow that uses a first quadrupole isolation window to step across a mass range, collecting high resolution full scan composite MS/MS at each step and generating an ion map of fragments from all detectable precursor masses (15, 16). From such data set, a virtual SRM, or pseudo-SRM, can be performed by extracting the product ion chromatogram of a given peptide (17) with bioinformatics tools such as Peakview®, Skyline (18), or OpenSWATH™ (19). In order to define which fragment masses should be used to quantify a given peptide, a spectral library of identified peptides can be manually programmed, downloaded (if available), or generated by previous DDA experiments. In terms of quantification power, SWATH™ combines the advantages of both DDA and SRM, as it allows for MS/MS-based label-free quantification, discrimination of isobaric peptides, and subsequent data mining of unpredicted species.Histone proteins are an excellent target sample to test SWATH™, as the peptides are heavily modified by PTMs and often have isobaric proteoforms present. We analyzed with both DDA and SWATH™ two model systems: (1) extracted histones from untreated (pluripotent) and retinoic acid (RA) treated (differentiated) human embryonic stem cells (hESCs, strain H9), and (2) extracted histones from undifferentiated and differentiated mouse trophoblast stem cells (mTSCs). The results from the DDA experiment were used to evaluate the reproducibility of peptide retention time and the variety of species identified. For the SWATH™ analysis we focused on histone H3, as it is the histone with the highest variety of modified peptides (6). Results highlighted that such acquisition method provides sensitive and precise MS/MS-based quantification of both isobaric and nonisobaric peptides. Our data demonstrate that quantification at the MS/MS level is highly reproducible, and identification of the peptide elution profile is assisted by the high mass accuracy and the large number of overlapping elution profiles of the fragment ions. Moreover, we show that by using different fragment ions for MS/MS quantification we achieved similar quantification results. Thus, we used all unique fragment ions for a given species to provide a robust quantification method, where by unique is intended fragment ions that belong to only one of the possible isobaric peptide proteoforms. Taken together, we prove that SWATH™-MS is a reliable and simple-to-use acquisition method to perform epigenetic histone PTM analysis.  相似文献   

17.
Protein C‐termini study is still a challenging task and far behind its counterpart, N‐termini study. MS based C‐terminomics study is often hampered by the low ionization efficiency of C‐terminal peptides and the lack of efficient enrichment methods. We previously optimized the C‐terminal amine‐based isotope labeling of substrates (C‐TAILS) method and identified 369 genuine protein C‐termini in Escherichia coli. A key limitation of C‐TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg‐C as the only specific enzyme in practice. Herein, we report an approach combining multi‐enzyme digestion and C‐TAILS, which significantly increases the identification rate of C‐terminal peptides and consequently improves the applicability of C‐TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi‐enzyme digestion. We successfully apply five different enzyme digestions to C‐TAILS, including trypsin, Arg‐C, Lys‐C, Lys‐N, and Lysarginase. As a result, we identify a total of 722 protein C‐termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.  相似文献   

18.
Isobaric tagging, via TMT or iTRAQ, is widely used in quantitative proteomics. To date, tandem mass spectrometric analysis of isobarically-labeled peptides with hybrid ion trap–orbitrap (LTQ-OT) instruments has been mainly carried out with higher-energy C-trap dissociation (HCD) or pulsed q dissociation (PQD). HCD provides good fragmentation of the reporter-ions, but peptide sequence-ion recovery is generally poor compared to collision-induced dissociation (CID). Herein, we describe an approach where CID and HCD spectra are combined. The approach ensures efficiently both identification and relative quantification of proteins. Tandem mass tags (TMTs) were used to label digests of human plasma and LC-MS/MS was performed with an LTQ-OT instrument. Different HCD collision energies were tested. The benefits to use CID and HCD with respect to HCD alone were demonstrated in terms of number of identifications, subsequent number of quantifiable proteins, and quantification accuracy. A program was developed to merge the peptide sequence-ion m/z range from CID spectra and the reporter-ion m/z range from HCD spectra, and alternatively to separate both spectral data into different files. As parallel CID in the LTQ almost doesn't affect the analysis duty cycle, the procedure should become a standard for quantitative analyses of proteins with isobaric tagging using LTQ-OT instruments.  相似文献   

19.
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments. Enterococcus durans A5‐11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5‐11a and durancin A5‐11b, which have similar antimicrobial properties. The whole durancins A5‐11a and A5‐11b, as well as their N‐ and C‐terminal fragments were synthesized, and their antifungal properties were studied. C‐terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N‐terminal peptides show activities against both bacterial and fungal strains tested. C‐terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C‐terminal fragment enhances the activity of the N‐terminal fragment in the whole bacteriocins against bacteria.

Significance and Impact of the Study

Antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments were determined. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. This work contributes to improve understanding of molecular causes of antimicrobial activities of bacteriocins and their fragments. It may be proposed that the studied peptides affect all the yeast cellular and intramembranes including cytoplasmatic reticulum and nuclear and vacuolar membranes.  相似文献   

20.
Most proteomic labelling technologies intend to improve protein quantification and/or facilitate (de novo) peptide sequencing. We present here a novel stable-isotope labelling method to simultaneously identify and quantify protein components in complex mixtures by specifically derivatizing the N-terminus of proteins with 4-sulphophenyl isothiocyanate (SPITC). Our approach combines protein identification with quantification through differential isotope-coded labelling at the protein N-terminus prior to digestion. The isotope spacing of 6 Da (unlabelled vs. six-fold 13C-labelled tag) between derivatized peptide pairs enables the detection on different MS platforms (MALDI and ESI). Optimisation of the reaction conditions using SPITC was performed on three model proteins. Improved detection of the N-terminally derivatized peptide compared to the native analogue was observed in negative-ion MALDI-MS. Simpler fragmentation patterns compared to native peptides facilitated protein identification. The 13C-labelled SPITC resulted in convenient peptide pair spacing without isotopic overlap and hence facilitated relative quantification by MALDI-TOF/TOF and LC-ESI-MS/MS. The combination of facilitated identification and quantification achieved by differentially isotope-coded N-terminal protein tagging with light/heavy SPITC represents, to our knowledge, a new approach to quantitative proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号