首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Vaccinia virus, the basis of the smallpox vaccine, is one of the largest viruses to replicate in humans. We have used in situ atomic force microscopy (AFM) to directly visualize fully hydrated, intact intracellular mature vaccinia virus (IMV) virions and chemical and enzymatic treatment products thereof. The latter included virion cores, core-enveloping coats, and core substructures. The isolated coats appeared to be composed of a highly cross-linked protein array. AFM imaging of core substructures indicated association of the linear viral DNA genome with a segmented protein sheath forming an extended approximately 16-nm-diameter filament with helical surface topography; enclosure of this filament within a 30- to 40-nm-diameter tubule which also shows helical topography; and enclosure of the folded, condensed 30- to 40-nm-diameter tubule within the core by a wall covered with peg-like projections. Proteins observed attached to the 30- to 40-nm-diameter tubules may mediate folding and/or compaction of the tubules and/or represent vestiges of the core wall and/or pegs. An accessory "satellite domain" was observed protruding from the intact core. This corresponded in size to isolated 70- to 100-nm-diameter particles that were imaged independently and might represent detached accessory domains. AFM imaging of intact virions indicated that IMV underwent a reversible shrinkage upon dehydration (as much as 2.2- to 2.5-fold in the height dimension), accompanied by topological and topographical changes, including protrusion of the satellite domain. As shown here, the chemical and enzymatic dissection of large, asymmetrical virus particles in combination with in situ AFM provides an informative complement to other structure determination techniques.  相似文献   

2.
3.
Import o f viral DNA into the nucleus is essential for the successful replication o f DNA tumour viruses. To achieve this goal, viruses have adapted strategies to traverse the barriers between the plasma membrane and the nucleus o f a host cell. Two DNA tumour viruses, simian virus 40 and adenovirus, achieve the nuclear-entry step in slightly different ways. SV40 DNA enters the nucleus through the nuclear pore complexes (NPCs) in apparently intact virions. By contrast, adenovirus particles dissociate near the NPC before the viral DNA is imported into the nucleus. In both cases, karyophilic protein components o f the viruses appear to mediate nuclear entry o f the viral genomes. In this article, we discuss how an understanding o f the cell biology o f virus entry can help us understand the process o f nuclear transport.  相似文献   

4.
Isolated human immunodeficiency virus (HIV) and HIV-infected human lymphocytes in culture have been imaged for the first time by atomic force microscopy (AFM). Purified virus particles spread on glass substrates are roughly spherical, reasonably uniform, though pleomorphic in appearance, and have diameters of about 120 nm. Similar particles are also seen on infected cell surfaces, but morphologies and sizes are considerably more varied, possibly a reflection of the budding process. The surfaces of HIV particles exhibit "tufts" of protein, presumably gp120, which do not physically resemble spikes. The protein tufts, which number about 100 per particle, have average diameters of about 200 A, but with a large variance. They likely consist of arbitrary associations of small numbers of gp120 monomers on the surface. In examining several hundred virus particles, we found no evidence that the gp120 monomers form threefold symmetric trimers. Although >95% of HIV-infected H9 lymphocytic cells were producing HIV antigens by immunofluorescent assay, most lymphocytes displayed few or no virus on their surfaces, while others were almost covered by a hundred or more viruses, suggesting a dependence on cell cycle or physiology. HIV-infected cells treated with a viral protease inhibitor and their progeny viruses were also imaged by AFM and were indistinguishable from untreated virions. Isolated HIV virions were disrupted by exposure to mild neutral detergents (Tween 20 and CHAPS) at concentrations from 0.25 to 2.0%. Among the products observed were intact virions, the remnants of completely degraded virions, and partially disrupted particles that lacked sectors of surface proteins as well as virions that were split or broken open to reveal their empty interiors. Capsids containing nucleic acid were not seen, suggesting that the capsids were even more fragile than the envelope and were totally degraded and lost. From these images, a good estimate of the thickness of the envelope protein-membrane-matrix protein outer shell of the virion was obtained. Treatment with even low concentrations (<0.1%) of sodium dodecyl sulfate completely destroyed all virions but produced many interesting products, including aggregates of viral proteins with strands of nucleic acid.  相似文献   

5.
The ability to obtain infectious papillomavirus virions from molecularly cloned DNA has not been previously reported. We demonstrate here that viral genomes isolated from a recombinant++ DNA clone of cottontail rabbit papillomavirus (CRPV) gave rise to infectious virus when inoculated into cottontail rabbit skin. Replication occurred in papillomas that formed at inoculation sites. Extract of a DNA-induced papilloma was serially passaged to naive rabbits with high efficiency. Complete virus was fractionated on cesium chloride density gradients, and papillomavirus particles were visualized by electron microscopy. CRPV DNA isolated from virions contained DNA sequence polymorphisms that are characteristic of the input CRPV-WA strain of virus, thereby proving that the newly generated virus originated from the molecularly cloned viral genome. These findings indicate that this will be a useful system in which to perform genetic analysis of viral gene functions involved in replication.  相似文献   

6.
7.
8.
X Lu  T M Block    W H Gerlich 《Journal of virology》1996,70(4):2277-2285
The human hepatoblastoma cell line HepG2 produces and secretes hepatitis B virus (HBV) after transfection of cloned HBV DNA. Intact virions do not infect these cells, although they attach to the surface of the HepG2 cell through binding sites in the pre-S1 domain. Entry of enveloped virions into the cell often requires proteolytic cleavage of a viral surface protein that is involved in fusion between the cell membrane and the viral envelope. Recently, we observed pre-S-independent, nonspecific binding between hepatitis B surface (HBs) particles and HepG2 cells after treatment of HBs antigen particles with V8 protease, which cleaves next to a putative fusion sequence. Chymotrypsin removed this fusion sequence and did not induce binding. In this study, we postulate that lack of a suitable fusion-activating protease was the reason why the HepG2 cells were not susceptible to HBV. To test this hypothesis, virions were partially purified from the plasma of HBV carriers and treated with either staphylococcal V8 or porcine chymotrypsin protease. Protease-digested virus lost reactivity with pre-S2-specific antibody but remained morphologically intact as determined by electron microscopy. After separation from the proteases, virions were incubated with HepG2 cells at pH 5.5. Cultures inoculated with either intact or chymotrypsin-digested virus did not contain detectable levels of intracellular HBV DNA at any time following infection. However, in cultures inoculated with V8-digested virions, HBV-specific products, including covalently closed circular DNA, viral RNA, and viral pre-S2 antigen, could be detected in a time-dependent manner following infection. Immunofluorescence analysis revealed that 10 to 30% of the infected HepG2 cells produced HBV antigen. Persistent secretion of virus by the infected HepG2 cells lasted at least 14 days and was maintained during several reseeding steps. The results show that V8-digested HBV can productively infect tissue cultures of HepG2 cells. It is suggested that proteolysis-dependent exposure of a fusion domain within the envelope protein of HBV is necessary during natural infection.  相似文献   

9.
Hepatitis C virus core protein forms the viral capsid and is targeted to lipid droplets (LDs) by its domain 2 (D2). By using a comparative analysis of two hepatitis C virus genomes (JFH1 and Jc1) differing in their level of virus production in cultured human hepatoma cells, we demonstrate that the core of the genotype 2a isolate J6 that is present in Jc1 mediates efficient assembly and release of infectious virions. Mapping studies identified a single amino acid residue in D2 as a major determinant for enhanced assembly and release of infectious Jc1 particles. Confocal microscopy analyses demonstrate that core protein in JFH1-replicating cells co-localizes perfectly with LDs and induces their accumulation in the perinuclear area, whereas no such accumulation of LDs and only a partial co-localization of core and LDs were found with the Jc1 genome. By using a fluorescence recovery after photobleaching assay, we found that green fluorescent protein-tagged D2 variants are mobile on LDs and that J6- and JFH1-D2 differ in their mobility. Taken together, our results demonstrate that the binding strength of the D2 domain of core for LDs is crucial for determining the efficiency of virus assembly.  相似文献   

10.
Sendai and influenza virions are able to fuse with mycoplasmata. Virus-Mycoplasma fusion was demonstrated by the use of fluorescently labeled intact virions and fluorescence dequenching, as well as by electron microscopy. A high degree of fusion was observed upon incubation of both virions with Mycoplasma gallisepticum or Mycoplasma capricolum. Significantly less virus-cell fusion was observed with Acholeplasma laidlawii, whose membrane contains relatively low amounts of cholesterol. The requirement of cholesterol for allowing virus-Mycoplasma fusion was also demonstrated by showing that a low degree of fusion was obtained with M. capricolum, whose cholesterol content was decreased by modifying its growth medium. Fluorescence dequenching was not observed by incubating unfusogenic virions with mycoplasmata. Sendai virions were rendered nonfusogenic by treatment with trypsin, phenylmethylsulfonyl fluoride, or dithiothreitol, whereas influenza virions were made nonfusogenic by treatment with glutaraldehyde, ammonium hydroxide, high temperatures, or incubation at low pH. Practically no fusion was observed using influenza virions bearing uncleaved hemagglutinin. Trypsinization of influenza virions bearing uncleaved hemagglutinin greatly stimulated their ability to fuse with Mycoplasma cells. Similarly to intact virus particles, also reconstituted virus envelopes, bearing the two viral glycoproteins, fused with M. capricolum. However, membrane vesicles, bearing only the viral binding (HN) or fusion (F) glycoproteins, failed to fuse with mycoplasmata. Fusion between animal enveloped virions and prokaryotic cells was thus demonstrated.  相似文献   

11.
Treatment of rabies virus with the nonionic detergent Nonidet P-40 resulted in solubilization of viral lipids and in a preferential release of the envelope glycoprotein. The other viral proteins and the viral ribonucleic acid remained associated in "core" particles sedimenting at a rate similar to that of intact virions. After fractionation of treated virus by velocity centrifugation in a sucrose density gradient, the amount of residual glycoprotein recovered in the "core" particle fraction and the extent of contamination of the glycoprotein fraction by other viral components were dependent on the ratio of detergent to viral protein used.  相似文献   

12.
Minute virus of mice (MVM) nucleoprotein complexes were leached from infected cell nuclei in the presence of a hypotonic buffer. Detailed biochemical analyses performed on the extracted complexes revealed nucleoprotein complexes sedimenting together with virions at 110S and defective particles sedimenting at 50S. In contrast to the virions, the nucleoprotein complexes were found to be sensitive to treatment with DNase, Sarkosyl, and heparin. They were found to be composed of replicative forms of MVM DNA and cellular histones. After extensive micrococcal nuclease digestion performed on purified nucleoprotein complexes, a viral nucleosomes core containing a DNA segment of about 140 base pairs in length was identified. These complexes when visualized by electron microscopy revealed the existence of beaded structures (minichromosomes) having 26 and 52 beads per monomer and dimer molecules, respectively. We suggest that the organization of the intracellular viral DNA in a minichromosome structure is an essential step in the virus growth cycle.  相似文献   

13.
Recently we have reported that a selective binding of potato virus X (PVX)-coded movement protein (termed TGBp1 MP) to one end of a polar coat protein (CP) helix converted viral RNA into a translatable form and induced a linear destabilization of the whole helical particle. Here, the native PVX virions, RNase-treated (PVX(RNA-DEG)) helical particles lacking intact RNA and their complexes with TGBp1 (TGBp1-PVX and TGBp1-PVX(RNA-DEG)), were examined by atomic force microscopy (AFM). When complexes of the TGBp1 MP with PVX were examined by means of AFM in liquid, no structural reorganization of PVX particles was observed. By contrast, the products of TGBp1-dependent PVX degradation termed "beads-on-string" were formed under conditions of AFM in air. The AFM images of PVX(RNA-DEG) were indistinguishable from images of native PVX particles; however, the TGBp1-dependent disassembly of the CP-helix was triggered when the TGBp1-PVX(RNA-DEG) complexes were examined by AFM, regardless of the conditions used (in air or in liquid). Our data supported the idea that binding of TGBp1 to one end of the PVX CP-helix induced linear destabilization of the whole helical particle, which may lead to its disassembly under conditions of AFM.  相似文献   

14.
NIH 3T3 cells were infected in culture with the oncogenic retrovirus, mouse leukemia virus (MuLV), and studied using atomic force microscopy (AFM). Cells fixed with glutaraldehyde alone, and those postfixed with osmium tetroxide, were imaged under ethanol according to procedures that largely preserved their structures. With glutaraldehyde fixation alone, the lipid bilayer was removed and maturing virions were seen emerging from the cytoskeletal matrix. With osmium tetroxide postfixation, the lipid bilayer was maintained and virions were observable still attached to the cell surfaces. The virions on the cell surfaces were imaged at high resolution and considerable detail of the arrangement of protein assemblies on their surfaces was evident. Infected cells were also labeled with primary antibodies against the virus env surface protein, followed by secondary antibodies conjugated with colloidal gold particles. Other 3T3 cells in culture were infected with MuLV containing a mutation in the gPr80(gag) gene. Those cells were observed by AFM not to produce normal MuLV on their surfaces, or at best, only at very low levels. The cell surfaces, however, became covered with tubelike structures that appear to result from a failure of the virions to properly undergo morphogenesis, and to fail in budding completely from the cell's surfaces.  相似文献   

15.
Replication of milker's node virus (MNV) DNA begins 4 to 8 h postinfection, continues to 30 to 36 h postinfection in the cytoplasm of infected, primary bovine embryonic kidney cells, and is accompanied by an inhibition of host nuclear DNA synthesis. Between 20 and 24 h postinfection, newly replicated genomes are incorporated into particles which cosediment with purified MNV. These biochemical measurements could be correlated with the development of MN virions as revealed by electron microscopic analysis of thin sections prepared from infected cells. Analysis of the DNA in purified MNV showed that the virions contained a double-stranded DNA molecule with a molecular weight of 85 x 10(6) to 87 x 10(6) and a guanine-plus-cytosine content of about 63%. After denaturation and sedimentation analysis of MNV DNA in alkaline sucrose gradients, three major DNA species were resolved. These species appeared to represent intact, terminally cross-linked genomes (approximately 75 to 80S); genomes bearing one nick (or with one cross-link removed) (60 to 65S); and complementary, denatured DNA strands released from cross-linked genomes bearing two nicks (or with both cross-links removed) (52 to 55S). Forty [35S]methionine-labeled polypeptides, ranging from approximately 200,000 daltons to 10,000 to 15,000 daltons, were detected by radioautography after polyacrylamide gel electrophoresis of the proteins present in detergent-solubilized MNV preparations. Treatment of MN virions with Nonidet P-40, beta-mercaptoethanol, and sonication released 10 polypeptides, which were apparently located on the surface of virions. Further fractionation of these released polypeptides, followed by electron microscopy and polyacrylamide gel electrophoresis, indicated that a 42,000- to 45,000-dalton polypeptide is a major component of the threadlike tubule structure present on the surface of MN virions.  相似文献   

16.
Satellite tobacco mosaic virus (STMV) was probed using a variety of proteases. Consequences of the degradation were analyzed using gel electrophoresis, quasi-elastic light scattering (QELS), and atomic force microscopy (AFM). Proteolysis rates of 30 minutes for complete degradation of the protein capsid, up to many hours, were investigated. With each protease, degradation of virions 17 nm in diameter was shown by QELS to result in particles of 10 nm diameter, which is that of the RNA core observed in the virion by x-ray diffraction analysis. This was verified by direct visualization with atomic force microscopy. Using QELS, it was further shown that freshly prepared RNA cores remain as individual, stable, 10-nm condensed particles for 12 to 24 h. Clusters of particles then formed, followed by very large aggregates of 500 to 1000 nm diameter. AFM showed that the aggregates were composed of groups of the condensed RNA cores and were not due to unfolding of the nucleic acid. No unfolding of the core particles into extended conformation was seen by AFM until the samples were heated well beyond 90 degrees C. Mass spectrometry of RNA core particles revealed the presence of a major polypeptide whose amino acid sequence corresponded to residues 2 through 25 of the coat protein. Amino acids 13 through 25 were previously observed to be in direct contact with the RNA and are presumably protected from protease digestion. Low resolution difference Fourier analyses indicated the courses of the remainders of the amino terminal strands (amino acids 2-12) in intact virions. Any individual strand appears to have several choices of path, which accounts for the observed disorder at high resolution. These positively charged strands, serving as virtual polyamines, engage the helical segments of RNA. The intimate association of amino acid residues 2 through 25 with RNA likely contributes to the stability of the condensed conformation of the nucleic acid cores.  相似文献   

17.
Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes.  相似文献   

18.
A new and improved procedure has been developed for the isolation of intact DNA genomes from purified vaccinia virions. Purified virions are layered on a neutral sucrose gradient containing sodium dodecyl sulfate, 2-mercaptoethanol and sodium chloride at neutral pH. Intact viral DNA free from protein and fully sensitive to DNase I is rapidly released from the virions.  相似文献   

19.
Properties of avian retrovirus particles defective in viral protease.   总被引:35,自引:30,他引:5       下载免费PDF全文
L Stewart  G Schatz    V M Vogt 《Journal of virology》1990,64(10):5076-5092
  相似文献   

20.
The vaccinia virus A11R gene has orthologs in all known poxvirus genomes, and the A11 protein has been previously reported to interact with the putative DNA packaging protein A32 in a yeast two-hybrid screen. Using antisera raised against A11 peptides, we show that the A11 protein was (i) expressed at late times with an apparent mass of 40 kDa, (ii) not incorporated into virus particles, (iii) phosphorylated independently of the viral F10 kinase, (iv) coimmunoprecipitated with A32, and (v) localized to the viral factory. To determine the role of the A11 protein and test whether it is indeed involved in DNA packaging, we constructed a recombinant vaccinia virus with an inducible A11R gene. This recombinant was dependent on inducer for single-cycle growth and plaque formation. In the absence of inducer, viral late proteins were produced at normal levels, but proteolytic processing and other posttranslational modifications of some proteins were inhibited, suggesting a block in virus particle assembly. Consistent with this observation, electron microscopy of cells infected in the absence of inducer showed virus factories with abnormal electron-dense viroplasms and intermediate density regions associated with membranes and containing the D13 protein. However, no viral membrane crescents, immature virions, or mature virions were produced. The requirement for nonvirion protein A11 in order to make normal viral membranes was an unexpected and exciting finding, since neither the origin of these membranes nor their mechanism of formation in the cytoplasm of infected cells is understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号