首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From a transplantable mouse teratoma it has been possible to derive an established keratinizing cell line (XB) which grows well in cultures containing lethally irradiated 3T3 fibroblasts at the correct density. Single cells of the keratinizing line grow into colonies each consisting of a stratified squamous epithelium. The keratinizing nature of the colonies has been demonstrated by specific staining with Rhodanile blue, and by light and electron microscopy of sections through the colonies. A function of fibroblasts appears to be a strict requirement for keratinization and an important though less strict requirement for cell growth. The fibroblast function can be carried out by medium harvested from 3T3 cultures.It is possible to detect keratinizing colonies in primary cultures of disaggregated teratoma cells combined with 3T3 cells. Such colonies appeared in cultures of a transplantable teratoma with an overall frequency of 6 × 10−6 of the cells plated. Nonkeratinizing colonies of cells with otherwise very similar appearance were about 10 fold more abundant. Since both the keratinizing and the related nonkeratinizing colonies can be identified in the living state, it is possible to isolate them from the primary cultures.  相似文献   

2.
A direct method is proposed to select less toxic mutants of Aspergillus terricola on a culture of fibroblasts. The conidia are first irradiated with UV, and then are used to grow colonies on the glass surface of tubes or flasks containing medium 199. The cells of fibroblasts are added thereupon and the two cultures are being grown together for 24--48 hours. The colonies which inhibit the growth of fibroblasts to a less extent are selected using microscopy. The method can be used for primarily selection of experimentally produced mutants of Aspergillus which form fibrinolytic enzymes possessing low toxicity.  相似文献   

3.
The role of hematopoietic microenvironments in the regulation of maturation and differentiation of hematopoietic cells, although heavily debated, remains uncertain. Several investigators have suggested that the adherent “stromal” cell populations, which grow as colonies in cultures of lymphomyeloid tissues, include the cells involved in such regulatory processes. Grossly, the colonies described by several investigators appear similar morphologically, and the cells giving rise to them have been variously termed (1) fibroblast colony forming cells (FCFC), (2) plaque forming units-culture (PFU-C), (3) macrophage colonies, and (4) marrow stromal cells. FCFC have been reported to re-establish their parent microenvironment when transplanted in an allogeneic system. In this study, cloned and enriched cell populations obtained from such colonies in cultures of murine lymphomyeloid tissues have been characterized by their growth in culture and using morphological, histochemical, and electron microscopic techniques. The results demonstrated that, although the initial stromal colonies appeared to be identical, the constituent cell types varied considerably. Some colonies were comprised primarily of macrophages, while others appeared to contain predominantly fibroblasts; two additional cell types that established colonies have not yet been satisfactorily identified. These results demonstrate the heterogeneity of lymphomyeloid stromal colonies. There is a need for caution in the analysis of experiments in which uncharacterized stromal cell colonies are transplanted or employed as supporting monolayers in culture systems in experiments designed to evaluate the origins and functions of lymphohematopoietic stroma.  相似文献   

4.
Summary Antibodies against intermediate-sized filaments, of the prekeratin or vimentin type, were used to investigate the presence of these filaments by indirect immunofluorescence microscopy in cultured and non-cultured amniotic fluid cells, in frozen sections of the placenta and in isolated cells of the amniotic epithelium. Two major classes of cells can be cultured from amniotic fluids, namely cells of epithelial origin containing filaments of the prekeratin type and cells of different origin which contain filaments of the vimentin type but are negative when tested with antibodies to epidermal prekeratin. The presence of prekeratin type filaments correlates with the morphology of colonies of amniotic fluid cell cultures in vitro as classified by Hoehn et al. (1974). Cells of E-type colonies are shown to be of epithelial origin. In contrast our data indicate a different origin of almost all cells of F-type colonies and of the large majority of cells of AF-type colonies. Cells of epithelial origin and positively stained with antibodies to epidermal prekeratin are occasionally scattered in F-type colonies and in variable percentages (up to 30%) in AF-type colonies. Surprisingly, cryostat sections of the amniotic epithelium and isolated groups of amniotic cells showed positive reactions with both antibodies to vimentin and prekeratin. The possibility that amniotic cells may be different from other epithelial cells in that they contain both types of filaments simultaneously already in situ is presently under investigation.Part of this work is included in the doctoral thesis of Irmgard Treiss to be submitted to the Faculty of Medicine of the University of Heidelberg  相似文献   

5.
Summary The distribution and organization of the extracellular matrix (ECM) proteins laminin, fibronectin, entactin, and type IV collagen were investigated in primary colonies and secondary cultures of bovine lens epithelial cells using species-specific antisera and indirect immunofluorescence microscopy. Primary cell colonies fixed in formaldehyde and permeabilized with Triton X-100 displayed diffuse clonies. In contrast, thick bundles of laminin and fibronectin were located on the basal cellsurfaces and in between cells in the densely packed center of the colonies, and as “adhesive plaques” and fine extracellular matrix cords in the sparsely populated (migratory) outer edge of the colonies. The distribution of ECM proteins observed in secondary lens epithelial cell cultures was similar to that observed at the periphery of the primary colony. Extraction of the secondary cell cultures with sodium deoxycholate confirmed that laminin and fibronectin were deposited on the basal cell surface. Indeed, the patterns of laminin and fibronectin deposition suggested that these proteins codistribute. These results establish that lens epithelial cells in culture can be used as a model system to study the synthesis and extracellular deposition of the basement membrane proteins, laminin and fibronectin. Supported by Public Health Service grant EY05570 from the National Eye Institute Bethesda, MD.  相似文献   

6.
Colony formation in agar by multipotential hemopoietic cells.   总被引:7,自引:0,他引:7  
Agar cultures of CBA fetal liver, peripheral blood, yolk sac and adult marrow cells were stimulated by pokeweed mitogen-stimulated spleen conditioned medium. Two to ten percent of the colonies developing were mixed colonies, documented by light or electron microscopy to contain erythroid, neutrophil, macrophage, eosinophil and megakaryocytic cells. No lymphoid cells were detected. Mean size for 7-day mixed colonies was 1,800-7,300 cells. When 7-day mixed colonies were recloned in agar, low levels of colony-forming cells were detected in 10% of the colonies but most daughter colonies formed were small neutrophil and/or macrophage colonies. Injection of pooled 7-day mixed colony cells to irradiated CBA mice produced low numbers of spleen colonies, mainly erythroid in composition. Karyotypic analysis using the T6T6 marker chromosome showed that some of these colonies were of donor origin. With an assumed f factor of 0.2, the mean content of spleen colony-forming cells per 7-day mixed colony was calculated to vary from 0.09 to 0.76 according to the type of mixed colony assayed. The fetal and adult multipotential hemopoietic cells forming mixed colonies in agar may be hemopoietic stem cells perhaps of a special or fetal type.  相似文献   

7.
Chick embryo cells transformed by Rous sarcoma virus (RSV) were able to grow in suspension, either as colonies when trapped in nutrient agar, or in spinner cultures using liquid medium. Two strains of RSV, RSV (RAV-1) and Schmidt-Ruppin RSV, were able to increase the ability of chick embryo cells to grow in suspension but Rous-associated virus (RAV-1) and polyoma virus were not. Cells growing in suspension supported high levels of RSV production and a simple method for propagating large amounts of virus is suggested. Suspended noninfected cells, which do not grow extensively, lose their ability to be infected by RSV, suggesting that cellular divisions must be in progress for successful infection by RSV.  相似文献   

8.
The growth process of Lactobacillus curvatus colonies was quantified by a coupled growth and diffusion equation incorporating a volumetric rate of lactic acid production. Analytical solutions were compared to numerical ones, and both were able to predict the onset of interaction well. The derived analytical solution modeled the lactic acid concentration profile as a function of the diffusion coefficient, colony radius, and volumetric production rate. Interaction was assumed to occur when the volume-averaged specific growth rate of the cells in a colony was 90% of the initial maximum rate. Growth of L. curvatus in solid medium is dependent on the number of cells in a colony. In colonies with populations of fewer than 10(5) cells, mass transfer limitation is not significant for the growth process. When the initial inoculation density is relatively high, colonies are not able to grow to these sizes and growth approaches that of broth cultures (negligible mass transfer limitation). In foods, which resemble the model solid system and in which the initial inoculation density is high, it will be appropriate to use predictive models of broth cultures to estimate growth. For a very low initial inoculation density, large colonies can develop that will start to deviate from growth in broth cultures, but only after large outgrowth.  相似文献   

9.
Abstract. After feeding, polyps of colonial hydroids contract regularly, dispersing food throughout the colony via the gastrovascular fluid. Such contractions may trigger signaling pathways that allow colonies to grow in an adaptive manner, i.e., to initiate development of more polyps in food‐rich areas and to suppress polyp development in food‐poor areas. In this context, we investigated the structure and potential signaling of the junction between polyps and stolons in colonies of the hydroid Podocoryna carnea. Using transmission electron microscopy, we found that the density of mitochondrion‐rich epitheliomuscular cells was low in polyp and stolon tissues except at or near the polyp‐stolon junction, where many of these mitochondrion‐rich cells occur in ectodermal tissue. In vivo fluorescence microscopy suggests that these mitochondria are a principal source of the metabolic signals of the colony. Both native fluorescence of NAD(P)H and fluorescence from peroxides (visualized with H2DCFDA) co‐localize to this region of the polyp. Rhodamine 123 fluorescence suggests that both these metabolic signals emanate from mitochondria. To test whether such metabolic signals may be involved in colony pattern formation, inbred lines of P. carnea were used. Colonies of a runner‐like inbred line grow with widely spaced polyps and long stolonal connections, much like wild‐type colonies in a food‐poor environment. Colonies of a sheet‐like inbred line grow with closely spaced polyps and short stolonal connections, similar to wild‐type colonies in a food‐rich environment. Polyp‐stolon junctions in runner‐like and sheet‐like colonies were imaged for the fluorescence of H2DCFDA. Densitometric analysis of this signal indicates that the mitochondria in epitheliomuscular cells of runner‐like polyps emit greater amounts of peroxides. Because peroxides and other reactive oxygen species are frequently intermediaries in metabolic signaling pathways, we suspect that such signaling may indeed occur at polyp‐stolon junctions, affecting colony pattern formation in these inbred lines and possibly in hydroid colonies in general.  相似文献   

10.
The growth process of Lactobacillus curvatus colonies was quantified by a coupled growth and diffusion equation incorporating a volumetric rate of lactic acid production. Analytical solutions were compared to numerical ones, and both were able to predict the onset of interaction well. The derived analytical solution modeled the lactic acid concentration profile as a function of the diffusion coefficient, colony radius, and volumetric production rate. Interaction was assumed to occur when the volume-averaged specific growth rate of the cells in a colony was 90% of the initial maximum rate. Growth of L. curvatus in solid medium is dependent on the number of cells in a colony. In colonies with populations of fewer than 105 cells, mass transfer limitation is not significant for the growth process. When the initial inoculation density is relatively high, colonies are not able to grow to these sizes and growth approaches that of broth cultures (negligible mass transfer limitation). In foods, which resemble the model solid system and in which the initial inoculation density is high, it will be appropriate to use predictive models of broth cultures to estimate growth. For a very low initial inoculation density, large colonies can develop that will start to deviate from growth in broth cultures, but only after large outgrowth.  相似文献   

11.
The effects of bromodeoxyuridine (BrdUrd) on the growth, morphology, and tumorigenicity of the spontaneously transformed rat liver cell line R72/3 were studied. These cells grow either in suspension or in a monolayer and are tumorigenic. In monolayer cultures, cells treated with low concentrations (2.5 μg/ml) of BrdUrd were larger, more spread out, and more firmly attached to the substratum than were untreated controls. Treated cells failed to grow in suspension or on confluent monolayers of 3T3 cells and did not form colonies in soft agar. Scanning electron microscopy revealed extensive flattening of treated cells and a dramatic reduction in the number of microvilli on the cell surface. Transmission electron microscopy showed an increase in polyribosomes and rough endoplasmic reticulum, as well as an enlargement of endoplasmic reticulum cisternae and a complete absence of the bundles of intermediate size filaments that were conspicuous in untreated cells. The persistence of these changes required the continuous presence of BrdUrd in the medium. The effects of BrdUrd were readily reversed by withdrawal of BrdUrd and were not expressed in the presence of excess thymidine.  相似文献   

12.
Y Fujimori  H Hara  T Taguchi  Y Kitamura  K Nagai 《Blut》1988,57(4):169-173
Murine hemopoietic blast cell colonies obtained from spleen cells of 5-fluorouracil (5-FU)-treated mice give rise to many multilineage colonies including granulocyte - erythrocyte - macrophage - megakaryocyte (GEMM) colonies in secondary cultures. Progenitor cells for blast cell colonies are considered to be more primitive than colony forming units (CFU)-GEMM. To determine whether they are clonal, we examined the phosphoglycerate kinase-1 (PGK-1) isozyme type of colonies originally grown from spleen cells of 5-FU-treated mice which had PGK-1 isozyme mosaicism. PGK assays of whole secondary colonies derived from one blast cell colony showed that they were either of type A or type B but not both. These results suggest that murine hemopoietic blast cell colonies are clonal.  相似文献   

13.
Colonies of chick retinal pigmented epithelial (RPE) cells offer an excellent model system for studying the organization of cytoskeleton in sheets of differentiating epithelial cells. The cells occupying the center of the colony resemble RPE cells in vivo and are cuboidal, pigmented, and relatively nonadherent while those toward the periphery gradually become flatter, nonpigmented, motile, and strongly adherent to the substratum. Immunofluorescence microscopy with antiserum against chicken erythrocyte alpha-spectrin reveals that this protein is present in the cortex of RPE cells in all parts of the colony. It is neither concentrated in, nor excluded from the regions occupied by the major microfilament bundles, and its distribution is not related to the adhesion patterns visualized by surface reflection interference microscopy. In contrast, the distribution of vinculin is closely correlated with the adhesiveness of RPE cells in different parts of the colony. Immunofluorescence microscopy reveals that in the RPE cells vinculin may be diffusely distributed in the cytoplasm; present in a cortical band outlining the cell borders; and present in focal contacts and adhesions. The distribution of vinculin is affected by the length of time the colonies grow in culture, by the degree of cell packing and by the adhesiveness of cells to the substratum. In RPE cells grown in vitro for short periods (less than or equal to 3 days) vinculin is found in focal contacts and adhesions in both the undifferentiated, well spread peripheral cells as well as in the differentiated, polygonally packed central cells of the colony. In RPE cells cultured for longer periods (greater than or equal to 14 days) vinculin is present in focal contacts and adhesions only in strongly adherent, undifferentiated cells at the edge of the colony. In packed central cells of both short- and long-term cultures vinculin is found in the cortical band which circumscribes the apical ends of cells at the level of the adherens type intercellular junctions. Its appearance in the cortical bands does not depend on the length of time the colonies are grown in vitro but on the presence of cell-cell contacts resulting from an increased degree of cell packing within the central part of the colony. These results are discussed in relation to the development and the role of extracellular matrix in determining the adhesiveness of RPE cells in vitro.  相似文献   

14.
Continuous suspension cultures of the marsh grass Spartina pectinata grow as either unorganized colonies or files of cells. Immunofluorescence of tubulin revealed microtubule (MT) structures similar to those encountered in meristematic cells, including cortical microtubule (MT) bands in some interphase cells and in all prophase cells. These MT bands were judged to be preprophase bands (PPBs) on the basis of their temporal appearance in the cell cycle and their position and orientation relative to division planes. Although PPBs are widely thought to be associated with organized tissues and polarized divisions, there are reports of PPBs in suspension cultures of four dicot species. This is the first report of a PPB in suspension cultures of a monocot species.  相似文献   

15.
Summary Conditions under which complete cultures of the petite-negative yeast Kluyveromyces lactis can be converted to metabolically active petite mutants have been found. These mutants, which lack mitochondrial protein synthesis have been shown to be metabolically active by their ability to exclude the dye trypan blue. They appear to possess a functional protein synthesising system, which is sensitive to the inhibitor trichodermin. However, on transfer to solid nutrient medium, these mutants fail to grow normally, and give rise to microcolonies composed of up to a thousand cells. These colonies autolyse after several days.  相似文献   

16.
Human foreskin cell cultures in scheduled DNA synthesis (S phase) of the cell cycle were exposed to UV irradiation at a dose of 10 J · m?2 in the presence of insulin. These treated cell populations, when selectively passaged in a high amino acid supplemented complete growth medium (CM) after 20 Dulbecco's phosphate buffered saline (pH 6.8) (PDL), were able to be grown in soft agar. These treated cell populations were also grown in 1% serum supplemented growth medium and at 41°C in 10% serum supplemented growth medium. Cell populations 4–5 PDL after treatment exhibited altered colony morphology and altered lectin agglutination profiles but would not grow in soft agar. These events appeared to be associated with the early stages in the expression phase of the transformed phenotype. After 20 PDL, we observed that these cells would grow in soft agar at a frequency of 20 colonies/105 cells seeded in soft agar. The cell populations derived from these colonies, when propagated and injected into the nude mice, formed myxofibromas at the injection sites rather than the type of tumor (fibrosarcoma) previously described for chemical carcinogen-induced neoplasms.  相似文献   

17.
The ability to clone hapten-specific B cells in agar and to subsequently trigger their clonal progeny to antibody synthesis was investigated. Fluorescein (FL) specific B cells were purified on FL-gelatin dishes and cultured in semisolid agar for 6 to 7 days; individual colonies were then picked for restimulation in microculture. FL-specific B cells could be cloned as efficiently as unpurified splenic B cells. The number of colonies formed depended on the presence of sheep erythrocytes (SRBC) or E. coli lipopolysaccharide (LPS) in the cultures. An additive number of colonies were observed with SRBC + LPS compared to that of SRBC or LPS alone. The colonies obtained from SRBC-containing cultures were stimulatable at high frequency by various FL-conjugated antigens to yield anti-FL PFC. However, colonies grown with LPS as the only additive were not stimulatable by any of the antigens tested. On the other hand, addition of M phi or SRBC as additional "mitogens" along with LPS in the agar resulted in progeny colonies that could respond in vitro. Although M phi did not increase the number of colonies, their presence enhanced the size and in some cases the frequency of stimulatable colonies. These data complement earlier observations in suggesting that different B cell subpopulations may grow under different cloning conditions. Moreover, the ability to stimulate the clonal progeny of single B cells to antibody synthesis should permit further definition of triggering and tolerance events at the single-cell level.  相似文献   

18.
Colony growth of protozoan parasites in agar can be useful for axenization, cloning, and viability studies. This is usually achieved with the pour plate method, for which the parasite colonies are situated within the agar. This technique has been described for Giardia intestinalis, Trichomonas vaginalis, and Entamoeba and Blastocystis species. Extracting such colonies can be laborious. It would be especially useful if parasites could be grown on agar as colonies. These colonies, being exposed on the agar surface, could be conveniently isolated for further investigation. In this study, we report the successful culture of B. hominis cells as colonies on solid agar. Colonies were enumerated and the efficiency of plating was determined. It was observed that B. hominis could be easily cultured on agar as clones. The colonies were dome-shaped and mucoid and could grow to 3 mm in diameter. Flow cytometric analyses revealed that parasite colonies remained viable for up to 2 weeks. Viable colonies were conveniently expanded in liquid or solid media. Scanning electron microscopy revealed that each colony consists of two regions; a dome-shaped, central core region and a flattened, peripheral region. Older colonies possessed numerous strand-like surface coat projections. This study provides the first report of clonal growth of B. hominis on agar and a simple, effective method for cloning and expansion of B. hominis cells.  相似文献   

19.
A small number of cells of lens epithelium from newly hatched chickens were cultured at clonal density to investigate the retention of differentiated properties during cellular growth in vitro. Singly plated cells proliferated to produce colonies, at least some of which were considered to be true clones of single cell origin. The differentiation of lens fibers occurring in many colonies was identified through observations by electron microscopy as well as immunofluorescence utilizing specific antiserum against lens fibers. Primary or secondary mass cultures of cells of lens epithelium contained cells which produce differentiated colonies when cultured at clonal density. Colony-producing cells can be differentially dissociated from monolayers by EDTA treatment without using tyrpsin. For successful culture of cells of lens epithelium at clonal density, the use of conditioned medium is necessary.  相似文献   

20.
Primary cultures of baby mouse kidney epithelial cells can grow without fibroblast overgrowth in a hormone-supplemented serum-free medium (Medium K-1) designed for an established kidney epithelial cell line, MDCK. The five supplements in Medium K-1 are insulin, transferrin, PGE1, T3, and hydrocortisone. Medium K-1 also supports the growth of kidney epithelial cell cultures from a number of animals, including man, without fibroblast overgrowth. Outgrowth of kidney epithelial cells from kidney explants was also observed with Medium K-1. Thus, the medium appears to be selective for epithelial cell growth. The physiological properties of primary cultures of baby mouse kidney epithelial cells were studied in detail. Baby mouse kidney epithelial cells grew at equal rates (0.5 doublings/day) in Medium K-1 and serum-supplemented medium. Medium K-1 also supported the formation of baby mouse kidney epithelial colonies at low cell densities. The dependence of baby mouse kidney epithelial colony formation upon the five factors in Medium K-1 was examined. These studies indicated that the formation of baby mouse kidney epithelial colonies in defined medium depended upon all the five supplements in Medium K-1, in a manner similar, although not identical, to MDCK colonies. Primary cultures of baby mouse kidney epithelial cells grown in Medium K-1 retained kidney cell-associated properties, including the ability to form multicellular domes, a phenomenon associated with transepithelial salt transport. Amiloride-sensitive Na+ uptake and the mucosal surface enzyme leucine aminopeptidase were also observed in baby mouse kidney cultures. Similar functions were observed in MDCK monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号