首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anti-hyperglycemic effects of ginseng: Comparison between root and berry   总被引:5,自引:0,他引:5  
L. Dey  J.T. Xie  A. Wang  J. Wu  S.A. Maleckar  C.-S. Yuan   《Phytomedicine》2003,10(6-7):600-605
Previous studies demonstrated that both ginseng root and ginseng berry possess anti-diabetic activity. However, a direct comparison between the root and the berry under the same experimental conditions has not been conducted. In the present study, we compared anti-hyperglycemic effect between Panax ginseng root and Panax ginseng berry in ob/ob mice, which exhibit profound obesity and hyperglycemia that phenotypically resemble human type-2 diabetes. We observed that ob/ob mice had high baseline glucose levels (195 mg/dl). Ginseng root extract (150 mg/kg body wt.) and ginseng berry extract (150 mg/kg body wt.) significantly decreased fasting blood glucose to 143 +/- 9.3 mg/dl and 150 +/- 9.5 mg/dl on day 5, respectively (both P < 0.01 compared with the vehicle). On day 12, although fasting blood glucose level did not continue to decrease in the root group (155 +/- 12.7 mg/dl), the berry group became normoglycemic (129 +/- 7.3 mg/dl; P < 0.01). We further evaluated glucose tolerance using the intraperitoneal glucose tolerance test. On day 0, basal hyperglycemia was exacerbated by intraperitoneal glucose load, and failed to return to baseline after 120 min. After 12 days of treatment with ginseng root extract (150 mg/kg body wt.), the area under the curve (AUC) showed some decrease (9.6%). However, after 12 days of treatment with ginseng berry extract (150 mg/kg body wt.), overall glucose exposure improved significantly, and the AUC decreased 31.0% (P < 0.01). In addition, we observed that body weight did not change significantly after ginseng root extract (150 mg/kg body wt.) treatment, but the same concentration of ginseng berry extract significantly decreased body weight (P < 0.01). These data suggest that, compared to ginseng root, ginseng berry exhibits more potent anti-hyperglycemic activity, and only ginseng berry shows marked anti-obesity effects in ob/ob mice.  相似文献   

2.
Ginseng berry reduces blood glucose and body weight in db/db mice.   总被引:3,自引:0,他引:3  
In this study, we observed anti-diabetic and anti-obesity effects of Panax ginseng berry in adult C57BL/Ks db/db mice and their lean littermates. Animals received daily intraperitoneal injections of Panax ginseng berry extract at 150 mg/kg body wt. for 12 consecutive days. On Day 5, the extract-treated db/db mice had significantly lower fasting blood glucose levels as compared to vehicle-treated mice (180.5+/-10.2 mg/dl vs. 226.0+/-15.3 mg/dl, P < 0.01). On day 12, the extract-treated db/db mice were normoglycemic (134.3+/-7.3 mg/dl) as compared to vehicle-treated mice (254.8+/-24.1 mg/dl; P < 0.01). Fasting blood glucose levels of lean mice did not decrease significantly after treatment with extract. After 12 days of treatment with the extract, glucose tolerance increased significantly, and overall blood glucose exposure calculated as area under the curve (AUC) decreased 53.4% (P < 0.01) in db/db mice. Furthermore, db/db mice treated with extract (150 mg/kg body wt.) showed weight loss from 51.0+/-1.9 g on Day 0, to 46.6+/-1.7 g on Day 5, and to 45.2+/-1.4 g on Day 12 (P < 0.05 and P < 0.01 compared to Day 0, respectively). The body weight of lean littermates also decreased at the same dose of extract. These data suggest that Panax ginseng berry extract may have therapeutic value in treating diabetic and obese patients.  相似文献   

3.
Anti-diabetic effect of ginsenoside Re in ob/ob mice   总被引:8,自引:0,他引:8  
We evaluated the anti-diabetic effects of ginsenoside Re in adult male C57BL/6J ob/ob mice. Diabetic ob/ob mice with fasting blood glucose levels of approximately 230 mg/dl received daily intraperitoneal injections of 7, 20 and 60 mg/kg ginsenoside Re for 12 consecutive days. Dose-related effects of ginsenoside Re on fasting blood glucose levels were observed. After the 20 mg/kg treatment, fasting blood glucose levels were reduced to 188+/-9.2 and 180+/-10.8 mg/dl on Day 5 and Day 12, respectively (both P<0.01 compared to vehicle group, 229+/-9.5 and 235+/-13.4 mg/dl, respectively). The EC(70) of ginsenoside Re was calculated to be 10.3 mg/kg and was used for subsequent studies. Consistent with the reduction in blood glucose, there were significant decreases in both fed and fasting serum insulin levels in mice treated with ginsenoside Re. With 12 days of ginsenoside treatment, glucose tolerance of ob/ob mice increased significantly, and the area under the curve for glucose decreased by 17.8% (P<0.05 compared to vehicle treatment). The hypoglycemic effect of the ginsenoside persisted even at 3 days of treatment cessation (blood glucose levels: 198+/-13.1 with ginsenoside treatment vs. 253+/-20.3 mg/dl with vehicle, P<0.01). There were no significant changes in body weight or body temperature. Preliminary microarray analysis revealed differential expression of skeletal muscle genes associated with lipid metabolism and muscle function. The results suggest that ginsenoside Re may prove to be useful in treating type 2 diabetes.  相似文献   

4.
Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mice were treated with the LXR agonist GW-3965 for 10 days. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp studies. Hepatic glucose production (HGP) and metabolic clearance rate (MCR) of glucose were determined with stable isotope techniques. Blood glucose and hepatic and whole body insulin sensitivity remained unaffected upon treatment in lean mice, despite increased hepatic triglyceride contents (61.7 +/- 7.2 vs. 12.1 +/- 2.0 nmol/mg liver, P < 0.05). In ob/ob mice, LXR activation resulted in lower blood glucose levels and significantly improved whole body insulin sensitivity. GW-3965 treatment did not affect HGP under normo- and hyperinsulinemic conditions, despite increased hepatic triglyceride contents (221 +/- 13 vs. 176 +/- 19 nmol/mg liver, P < 0.05). Clamped MCR increased upon GW-3965 treatment (18.2 +/- 1.0 vs. 14.3 +/- 1.4 ml x kg(-1) x min(-1), P = 0.05). LXR activation increased white adipose tissue mRNA levels of Glut4, Acc1 and Fasin ob/ob mice only. In conclusion, LXR-induced blood glucose lowering in ob/ob mice was attributable to increased peripheral glucose uptake and metabolism, physiologically reflected in a slightly improved insulin sensitivity. Remarkably, steatosis associated with LXR activation did not affect hepatic insulin sensitivity.  相似文献   

5.
1. Plasma glucose and insulin responses to bombesin were examined in 12-15-week-old 12 hr fasted lean and genetically obese hyperglycaemic (ob/ob) mice. 2. Bombesin (1 mg/kg ip) produced a prompt but transient increase of plasma insulin in lean mice (maximum increase of 50% at 5 min), and a more slowly generated but protracted insulin response in ob/ob mice (maximum increase of 80% at 30 min). Plasma glucose concentrations of both groups of mice were increased by bombesin (maximum increases of 40 and 48% respectively in lean and ob/ob mice at 15 min). 3. When administered with glucose (2 g/kg ip), bombesin (1 mg/kg ip) rapidly increased insulin concentrations of lean and ob/ob mice (maximum increases of 39 and 63% respectively at 5 min). Bombesin did not significantly alter the rise of plasma glucose after exogenous glucose administration to these mice. 4. The results indicate that bombesin exerts an insulin-releasing effect in lean and ob/ob mice. The greater insulin-releasing effect in ob/ob mice renders bombesin a possible component of the overactive entero-insular axis in the ob/ob mutant, especially if it acts within the islets as a neurotransmitter or paracrine agent.  相似文献   

6.
The dried sap of the aloe plant (aloes) is one of several traditional remedies used for diabetes in the Arabian peninsula. Its ability to lower the blood glucose was studied in 5 patients with non-insulin-dependent diabetes and in Swiss albino mice made diabetic using alloxan. During the ingestion of aloes, half a teaspoonful daily for 4-14 weeks, the fasting serum glucose level fell in every patient from a mean of 273 +/- 25 (SE) to 151 +/- 23 mg/dl (p less than 0.05) with no change in body weight. In normal mice, both glibenclamide (10 mg/kg twice daily) and aloes (500 mg/kg twice daily) induced hypoglycaemia after 5 days, 71 +/- 6.2 and 91 +/- 7.6 mg/dl, respectively, versus 130 +/- 7 mg/dl in control animals (p less than 0.01); only glibenclamide was effective after 3 days. In the diabetic mice, fasting plasma glucose was significantly reduced by glibenclamide and aloes after 3 days. Thereafter only aloes was effective and by day 7 the plasma glucose was 394 +/- 22.0 versus 646 +/- 35.9 mg/dl, in the controls and 726 +/- 30.9 mg/dl in the glibenclamide treated group (p less than 0.01). We conclude that aloes contains a hypoglycaemic agent which lowers the blood glucose by as yet unknown mechanisms.  相似文献   

7.
The ethyl acetate extract of the gum of the guggul tree, Commiphora mukul (guggulipid), is marketed for the treatment of dyslipidaemia and obesity. We have found that it protects Lep(ob)/Lep(ob) mice from diabetes and have investigated possible molecular mechanisms for its metabolic effects, in particular those due to a newly identified component, commipheric acid. Both guggulipid (EC(50)=0.82 microg/ml) and commipheric acid (EC(50)=0.26 microg/ml) activated human peroxisome proliferator-activated receptor alpha (PPARalpha) in COS-7 cells transiently transfected with the receptor and a reporter gene construct. Similarly, both guggulipid (EC(50)=2.3 microg/ml) and commipheric acid (EC(50)=0.3 microg/ml) activated PPARgamma and both promoted the differentiation of 3T3 L1 preadipocytes to adipocytes. Guggulipid (EC(50)=0.66 microg/ml), but not commipheric acid, activated liver X receptor alpha (LXRalpha). E- and Z-guggulsterones, which are largely responsible for guggulipid's hypocholesterolaemic effect, had no effects in these assays. Guggulipid (20 g/kg diet) improved glucose tolerance in female Lep(ob)/Lep(ob) mice. Pure commipheric acid, given orally (960 mg/kg body weight, once daily), increased liver weight but did not affect body weight or glucose tolerance. However, the ethyl ester of commipheric acid (150 mg/kg, twice daily) lowered fasting blood glucose and plasma insulin, and plasma triglycerides without affecting food intake or body weight. These results raise the possibility that guggulipid has anti-diabetic activity due partly to commipheric acid's PPARalpha/gamma agonism, but the systemic bioavailability of orally dosed, pure commipheric acid appears poor. Another component may contribute to guggulipid's anti-diabetic and hypocholesterolaemic activity by stimulating LXRalpha.  相似文献   

8.
The effects of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) were investigated on preparations of glycogen phosphorylase (GP) and in C57BL6J (ob/ob) mice by (13)C NMR in vivo. Independent of the phosphorylation state or the mammalian species or tissue from which GP was derived, DAB inhibited GP with K(i)-values of approximately 400 nM. The mode of inhibition was uncompetitive or noncompetitive, with respect to glycogen and P(i), respectively. The effects of glucose and caffeine on the inhibitory effect of DAB were investigated. Taken together, these data suggest that DAB defines a novel mechanism of action. Intraperitoneal treatment with DAB (a total of 105 mg/kg in seven doses) for 210 min inhibited glucagon-stimulated glycogenolysis in obese and lean mice. Thus, liver glycogen levels were 361 +/- 19 and 228 +/- 19 micromol glucosyl units/g with DAB plus glucagon in lean and obese mice, respectively, compared to 115 +/- 24 and 37 +/- 8 micromol glucosyl units/g liver with glucagon only. Moreover, with glucagon only end-point blood glucose levels were at 29 +/- 2 and 17.5 +/- 2 mM in obese and lean mice, respectively, compared to 17.5 +/- 1 and 12 +/- 1 mM with glucagon plus DAB. In conclusion, DAB is a novel and potent inhibitor of GP with an apparently distinct mechanism of action. Further, DAB inhibited the hepatic glycogen breakdown in vivo and displayed an accompanying anti-hyperglycemic effect, which was most pronounced in obese mice. The data suggest that inhibition of GP may offer a therapeutic principle in Type 2 diabetes.  相似文献   

9.
Pancreatic islets were isolated from the fetuses of normal rats and rats made diabetic by the iv administration of streptozotocin (STZ) on either Day 3 or 5 of pregnancy. Of the rats made diabetic on Day 3, one group also received insulin injections at the appearance of glucosuria. Maternal blood glucose on Day 20 of gestation was significantly different in the diabetic rats (405 +/- 27 mg/dl) from the normal (97 +/- 1 mg/dl) and insulin-treated diabetic rats (69 +/- 9 mg/dl). While fetal weight was significantly decreased in the STZ-treated rats (2.64 +/- 0.13 g vs 3.52 +/- 0.05 g for the control group, P less than 0.005), fetal glucose was significantly higher in the STZ-treated than in normal pups (342 +/- 11 vs 35 +/- 1 mg/dl, P less than 0.005). Both fetal weight and glucose were normalized by insulin treatment: 3.16 +/- 0.18 g and 31 +/- 7 mg/dl, respectively. Insulin release from fetal islets of diabetic dams was blunted after a week in culture both in basal and stimulated conditions. After 2 weeks in culture, there was partial recovery in the insulin response to glucose but it did not equal to that measured in fetal islets from the normal and insulin-treated diabetic rats. These data suggest maternal hyperglycemia severely impairs fetal weight and insulin release from fetal rat islets in vitro, and correction of the hyperglycemia by insulin treatment not only improves fetal weight and glucose concentrations, but it also normalizes insulin release from fetal rat islets in vitro.  相似文献   

10.
Nonrodent models of diabetes are needed for practical and physiological reasons. Induction of mild insulin-deficient diabetes was investigated in male G?ttingen minipigs by use of streptozotocin (STZ) alone (75, 100, and 125 mg/kg) or 125 mg/kg combined with pretreatment with nicotinamide (NIA; 0, 20, 67, 100, 150, and 230 mg/kg). Use of NIA resulted in a less steep slope of the regression line between fasting plasma glucose and changing doses compared with STZ [-7.0 +/- 1.4 vs. 29.7 +/- 7.0 mM. mg(-1). kg(-1), P < 0.0001]. Intermediate NIA doses induced moderate changes of glucose tolerance [glucose area under the curve increased from 940 +/- 175 to 1,598 +/- 462 mM. min, P < 0.001 (100 mg/kg) and from 890 +/- 109 to 1,669 +/- 691 mM. min, P = 0.003 (67 mg/kg)] with reduced insulin secretion [1,248 +/- 602 pM. min after 16 days and 1,566 +/- 190 pM. min after 60 days vs. 3,251 +/- 804 pM. min in normal animals (P < 0.001)] and beta-cell mass [5.5 +/- 1.4 mg/kg after 27 days and 7.9 +/- 4.1 mg/kg after 60 days vs. 17.7 +/- 4.7 mg/kg in normal animals (P = 0.009)]. The combination of NIA and STZ provided a model characterized by fasting and especially postprandial hyperglycemia and reduced, but maintained, insulin secretion and beta-cell mass. This model holds promise as an important tool for studying the pathophysiology of diabetes and development of new pharmacological agents for treatment of the disease.  相似文献   

11.
The effects of a 10-day low-calorie diet (LCD; n = 8) or exercise training (ET; n = 8) on insulin secretion and action were compared in obese men (n = 9) and women (n = 7), aged 53 +/- 1 yr, with abnormal glucose tolerance by using a hyperglycemic clamp with superimposed arginine infusion and a high-fat drink. Body mass (LCD, 115 +/- 5 vs. 110 +/- 5 kg; ET, 111 +/- 7 vs. 109 +/- 7 kg; P < 0. 01) and fasting plasma glucose (LCD, 115 +/- 10 vs. 99 +/- 4 mg/dl; ET, 112 +/- 4 vs. 101 +/- 5 mg/dl, P < 0.01) and insulin (LCD, 23.9 +/- 5.6 vs. 15.2 +/- 3.9 microU/ml; ET, 17.6 +/- 1.9 vs. 13.9 +/- 2. 4 microU/ml; P < 0.05) decreased in both groups. There was a 40% reduction in plasma insulin during hyperglycemia (0-45 min) after LCD (peak: 118 +/- 18 vs. 71 +/- 14 microU/ml; P < 0.05) and ET (69 +/- 14 vs. 41 +/- 7 microU/ml; P < 0.05) and trends for reductions during arginine infusion and a high-fat drink. The 56% increase in glucose uptake after ET (4.95 +/- 0.90 vs. 7.74 +/- 0.82 mg. min-1. kg fat-free mass-1; P < 0.01) was significantly (P < 0.01) greater than the 19% increase (5.72 +/- 1.12 vs. 6.80 +/- 0.94 mg. min-1. kg fat-free mass-1; P = not significant) that occurred after LCD. The marked increase in glucose disposal after ET, despite lower insulin levels, suggests that short-term exercise is more effective than diet in enhancing insulin action in individuals with abnormal glucose tolerance.  相似文献   

12.
The intestines of obese hyperglycaemic (ob/ob) mice contain greatly increased amounts of glucagon-like immunoreactive peptides. To investigate their role in the increased activity of the entero-insular axis of these mice, the insulin-releasing effect of glucagon-like peptide-1 (GLP-1) was examined in 24 hour fasted 12-15 weeks old ob/ob mice under conditions of basal and elevated glycaemia. Compared with glucagon (100 micrograms/kg ip), which produce an approximately 3-fold increase in basal plasma glucose and insulin concentrations, GLP-1 (100 micrograms/kg ip) produce a very small (less than 1 fold) increase in plasma insulin, with no significant change in plasma glucose. The insulin-releasing effect of glucagon, but not GLP-1 was increased by administration in combination with glucose (2 g/kg ip). The results indicate that GLP-1, which exhibits considerable sequence homology with glucagon, exerts only a weak insulin-releasing effect without a significant hyperglycaemic effect in ob/ob mice. Thus GLP-1 is unlikely to be an important endocrine component of the two over-active entero-insular axis in ob/ob mice.  相似文献   

13.
To investigate the satiety defect of hyperphagic genetically obese (ob/ob) mice, acute feeding responses to three differently acting anorectic agents were determined in 7-9 weeks old lean (+/+) and ob/ob mice habituated to a restricted (0900-1230 hr) daily feeding routine. Fenfluramine (10 mg/kg), cholecystokinin (100 U/kg) and neurotensin (500 micrograms/kg), administered intraperitoneally 15 min before feeding, each produced a rapid but transient suppression of food consumption in ob/ob mice, similar to lean controls. The results suggest that neural satiety mechanisms triggered via serotoninergic pathways (fenfluramine), vagal afferents (cholecystokinin) and the hypothalamic paraventricular nucleus (neurotensin) are functional in ob/ob mice, supporting the view that the satiety defect of ob/ob mice resides outside of the nervous system.  相似文献   

14.
Acute treatment of ob/ob mice with S-carboxymethylated hGH (RCM-hGH), a diabetogenic derivative of GH which lacks significant insulin-like and growth-promoting activities, results in an increase in fasting plasma insulin and blood glucose levels and enhanced peripheral tissue insulin resistance. Plasma insulin level increases within 3 h after RCM-hGH is administered, whereas increased blood glucose concentration and enhanced peripheral tissue insulin resistance became evident 6 h after the hormone derivative is given. The lag period seen in the manifestation of these diabetogenic effects of RCM-hGH is consistent with the time required for gene expression. Therefore, the present study was undertaken to determine whether the above acute responses to the diabetogenic action of RCM-hGH would be expressed in ob/ob mice in which protein synthesis was blocked with cycloheximide. Female ob/ob mice were given either saline or cycloheximide (0.1 mg/g BW) ip and 1 h later were fasted and treated with either saline or 200 micrograms RCM-hGH ip. The mice were given a second injection of cycloheximide during the middle of the hormone treatment period to insure that protein synthesis remained blocked for the entire 6 h. In the animals not receiving cycloheximide, fasting plasma insulin level and blood glucose concentration were markedly elevated 6 h after the injection of RCM-hGH. Also, the GH derivative attenuated the ability of insulin added in vitro to stimulate glucose oxidation by adipose tissue segments isolated from the animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Evaluating the glucose tolerance test in mice   总被引:1,自引:0,他引:1  
The objective of this study was to determine the optimal conditions under which to assess glucose tolerance in chow- and high-fat-fed C57BL/6J mice. Mice were fed either chow or high-fat diet for 8 wk. Variables tested were fasting duration (0-, 3-, 6-, and 24-h and overnight fasting), route of administration (intraperitoneal vs. oral) load of glucose given (2, 1, or 0.5 g/kg and fixed 50-mg dose), and state of consciousness. Basal glucose concentrations were increased in high-fat- compared with chow-fed mice following 6 h of fasting (9.1 +/- 0.3 vs. 7.9 +/- 0.4 mmol/l P = 0.01). Glucose tolerance was most different and therefore significant (P = 0.001) in high-fat-fed mice after 6 h of fasting (1,973 +/- 96 vs. 1,248 +/- 83 mmol.l(-1).120 min(-1)). The difference in glucose tolerance was greater following an OGTT (142%), in contrast to an IPGTT, with a 127% difference between high fat and chow. We also found that administering 2 g/kg of glucose resulted in a greater level of significance (P = 0.0008) in glucose intolerance in high-fat- compared with chow-fed mice. A fixed dose of 50 mg glucose regardless of body weight was enough to show glucose intolerance in high-fat- vs. chow-fed mice. Finally, high-fat-fed mice showed glucose intolerance compared with their chow-fed counterparts whether they were tested under conscious or anesthetized conditions. We conclude that 2 g/kg glucose administered orally following 6 h of fasting is best to assess glucose tolerance in mice under these conditions.  相似文献   

16.
The hypoglycemic and hypolipidemic effect of aqueous extract of Arachis hypogaea was investigated in normal and alloxan-induced diabetic rats. The extract caused a significant (P < 0.05) decrease of fasting blood glucose of both normal and alloxan-induced diabetic rats from 102.60 +/- 1.65 mg/dl to 88.79 +/- 0.94 mg/dl for normal and 189.0 +/- 30.79 mg/dl to 107.55 +/- 1.54 mg/dl for alloxan-induced diabetic rats. The extract also caused a significant (P < 0.05) decrease in serum triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol in both normal and alloxan-induced diabetic rats.  相似文献   

17.
To evaluate preventive effects of pioglitazone on pancreatic beta-cell damage in C57BL/KsJ db/db mice, an obese diabetic animal model, the pancreatic islets were compared morphologically between pioglitazone-treated (100 mg/kg daily po) and untreated db/db mice (n = 7 for each) after a 12-wk intervention (6-18 wk of age). The fasting blood glucose level was significantly improved by the treatment with pioglitazone (260 +/- 12 vs. 554 +/- 62 mg/dl, P < 0.05). The islet mass in the pancreas was significantly greater in pioglitazone-treated mice than in untreated mice (10.2 +/- 1.1 vs. 4.6 +/- 0.2 mg, P < 0.01). Subsequently, biochemical and physiological analyses of the beta-cell function were employed using pioglitazone-treated and untreated db/db mice (n = 6 for each) and pioglitazone-treated and untreated db/+ mice (n = 6 for each). After 2 wk of treatment (10-12 wk of age), the plasma levels of triglyceride and free fatty acid were significantly decreased, whereas the plasma adiponectin level increased significantly compared with the untreated group (65.2 +/- 18.0 vs. 18.3 +/- 1.3 microg/ml, P < 0.05). Pioglitazone significantly reduced the triglyceride content in the islets (43.3 +/- 3.6 vs. 65.6 +/- 7.6 ng/islet, P < 0.05) with improved glucose-stimulated insulin secretion. Pioglitazone showed no significant effects on the biochemical and physiological parameters in db/+ mice. The present study first demonstrated that pioglitazone prevents beta-cell damage in an early stage of the disease progression in db/db mice morphologically and physiologically. Our results suggest that pioglitazone improves glucolipotoxicity by increasing insulin sensitivity and reducing fat accumulation in the pancreatic islets.  相似文献   

18.
Insulin binding and insulin receptor tyrosine kinase activity were examined in two rodent models with genetic insulin resistance using partially-purified skeletal muscle membrane preparations. Insulin binding activity was decreased about 50% in both 12-week (219 +/- 184 vs 1255 +/- 158 fmoles/mg, p less than 0.01) and 24-week old (2120 +/- 60 vs 1081 +/- 60 fmoles/mg, p less than 0.01) ob/ob mice. In contrast, insulin binding to membrane derived from 24-week old db/db mice was not significantly different from lean controls (1371 +/- 212 vs 1253 +/- 247 fmoles/mg). Insulin-associated tyrosine kinase activity of membranes from ob/ob skeletal muscle was decreased, compared to its normal lean littermate, when compared on a per mg of protein basis in both 12-week (37 +/- 3 vs 21 +/- 3 pmoles/min/mg, p less than 0.05) and 24-week old (71 +/- 5 vs 37 +/- 6 pmoles/min/mg, p less than 0.01) mice. However, no significant differences in kinase activities were observed when the data were normalized and compared on a per fmole of insulin-binding activity basis for the 12-week (12 +/- 1 vs 11 +/- 2) and 24-week (27 +/- 2 vs 20 +/- 3) age groups. Insulin receptor tyrosine kinase activity of db/db skeletal muscle membranes was not different than its normal lean littermate whether expressed on a protein (34 +/- 7 vs 30 +/- 3) or fmole of insulin-binding activity (21 +/- 4 vs 18 +/- 4) basis. These data suggest that insulin receptor tyrosine kinase is not associated with the insulin resistance observed in ob/ob and db/db mice and demonstrate differences in receptor regulation between both animal models.  相似文献   

19.
Endothelial dysfunction is a hallmark of Type 2 diabetes related to hyperglycemia and oxidative stress. Nitric oxide-dependent vasodilator actions of insulin may augment glucose disposal. Thus endothelial dysfunction may worsen insulin resistance. Intra-arterial administration of vitamin C improves endothelial dysfunction in diabetes. In the present study, we investigated effects of high-dose oral vitamin C to alter endothelial dysfunction and insulin resistance in Type 2 diabetes. Plasma vitamin C levels in 109 diabetic subjects were lower than healthy (36 +/- 2 microM) levels. Thirty-two diabetic subjects with low plasma vitamin C (<40 microM) were subsequently enrolled in a randomized, double-blind, placebo-controlled study of vitamin C (800 mg/day for 4 wk). Insulin sensitivity (determined by glucose clamp) and forearm blood flow in response to ACh, sodium nitroprusside (SNP), or insulin (determined by plethysmography) were assessed before and after 4 wk of treatment. In the placebo group (n = 17 subjects), plasma vitamin C (22 +/- 3 microM), fasting glucose (159 +/- 12 mg/dl), insulin (19 +/- 7 microU/ml), and SI(Clamp) [2.06 +/- 0.29 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)] did not change significantly after placebo treatment. In the vitamin C group (n = 15 subjects), basal plasma vitamin C (23 +/- 2 microM) increased to 48 +/- 6 microM (P < 0.01) after treatment, but this was significantly less than that expected for healthy subjects (>80 microM). No significant changes in fasting glucose (156 +/- 11 mg/dl), insulin (14 +/- 2 microU/ml), SI(Clamp) [2.71 +/- 0.46 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)], or forearm blood flow in response to ACh, SNP, or insulin were observed after vitamin C treatment. We conclude that high-dose oral vitamin C therapy, resulting in incomplete replenishment of vitamin C levels, is ineffective at improving endothelial dysfunction and insulin resistance in Type 2 diabetes.  相似文献   

20.
Acylation-stimulating protein (ASP) acts as a paracrine signal to increase triglyceride synthesis in adipocytes. ASP administration results in more rapid postprandial lipid clearance. In mice, C3 (the precursor to ASP) knockout results in ASP deficiency and leads to reduced body fat and leptin levels. The protective potential of ASP deficiency against obesity and involvement of the leptin pathway were examined in ob/ob C3(-/-) double knockout mice (2KO). Compared with age-matched ob/ob mice, 2KO mice had delayed postprandial triglyceride and fatty acid clearance; associated with decreased body weight (4-17 weeks age: male: -13.7%, female: -20.6%, p < 0.0001) and HOMA (homeostasis model assessment) index (-37.7%), suggesting increased insulin sensitivity. By contrast, food intake in 2KO mice was +9.1% higher over ob/ob mice (p < 0.001, 2KO 5.1 +/- 0.2 g/day, ob/ob 4.5 +/- 0.2 g/day, wild type 2.6 +/- 0.1 g/day). The hyperphagia/leanness was balanced by a 28.5% increase in energy expenditure (oxygen consumption: 2KO, 131 +/- 8.9 ml/h; ob/ob, 102 +/- 4.5 ml/h; p < 0.01; wild type, 144 +/- 8.9 ml/h). These results suggest that the ASP regulation of energy storage may influence energy expenditure and dynamic metabolic balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号