首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by the differentiation of a transient population of germ cells called gonocytes found in the center of the seminiferous tubule. The fate of gonocytes depends upon these cells resuming mitosis and developing the capacity to migrate from the center of the seminiferous tubule to the basement membrane. This process begins approximately Day 3 postpartum in the mouse, and by Day 6 postpartum differentiated type A spermatogonia first appear. It is essential for continual spermatogenesis in adults that some gonocytes differentiate into spermatogonial stem cells, which give rise to all differentiating germ cells in the testis, during this neonatal period. The presence of spermatogonial stem cells in a population of cells can be assessed with the use of the spermatogonial stem cell transplantation technique. Using this assay, we found that germ cells from the testis of Day 0-3 mouse pups can colonize recipient testes but do not proliferate and establish donor-derived spermatogenesis. However, germ cells from testes of Day 4-5 postpartum mice colonize recipient testes and generate large areas of donor-derived spermatogenesis. Likewise, germ cells from Day 10, 12, and 28 postpartum animals and adult animals colonize and establish donor-derived spermatogenesis, but a dramatic reduction in the number of colonies and the extent of colonization occurs from germ cell donors Days 12-28 postpartum that continues in adult donors. These results suggest spermatogonial stem cells are not present or not capable of initiating donor-derived spermatogenesis until Days 3-4 postpartum. The analysis of germ cell development during this time frame of development and spermatogonial stem cell transplantation provides a unique system to investigate the establishment of the stem cell niche within the mouse testis.  相似文献   

2.
Transplantation of germ cells from rabbits and dogs into mouse testes.   总被引:23,自引:0,他引:23  
Spermatogonial stem cells of a fertile mouse transplanted into the seminiferous tubules of an infertile mouse can develop spermatogenesis and transmit the donor haplotype to progeny of the recipient mouse. When testis cells from rats or hamsters were transplanted to the testes of immunodeficient mice, complete rat or hamster spermatogenesis occurred in the recipient mouse testes, albeit with lower efficiency for the hamster. The objective of the present study was to investigate the effect of increasing phylogenetic distance between donor and recipient animals on the outcome of spermatogonial transplantation. Testis cells were collected from donor rabbits and dogs and transplanted into testes of immunodeficient recipient mice in which endogenous spermatogenesis had been destroyed. In separate experiments, rabbit or dog testis cells were frozen and stored in liquid nitrogen or cultured for 1 mo before transplantation to mice. Recipient testes were analyzed, using donor-specific polyclonal antibodies, from 1 to >12 mo after transplantation for the presence of donor germ cells. In addition, the presence of canine cells in recipient testes was demonstrated by polymerase chain reaction using primers specific for canine alpha-satellite DNA. Donor germ cells were present in the testes of all but one recipient. Donor germ cells predominantly formed chains and networks of round cells connected by intercellular bridges, but later stages of donor-derived spermatogenesis were not observed. The pattern of colonization after transplantation of cultured cells did not resemble spermatogonial proliferation. These results indicate that fresh and cryopreserved germ cells can colonize the mouse testis but do not differentiate beyond the stage of spermatogonial expansion.  相似文献   

3.
Testis cell transplantation from mice or rats into recipient mouse seminiferous tubules results in donor cell-derived spermatogenesis in nearly all host testes. Normal spermatozoa are produced and, in the most successful mouse transplantations, the donor haplotype is transmitted to progeny of the recipient. However, few studies have been performed in other species. In this report, we demonstrate that rat and mouse testis cells will generate donor cell-derived spermatogenesis in recipient rat seminiferous tubules. Depletion of endogenous spermatogenesis before donor cell transplantation was more difficult in rat than reported for mouse recipients. A protocol employing treatment of neonatal rats with busulfan was most effective in preparing recipients and allowed more than 90% of testes to be colonized by donor cells. Transplantation of mouse testis cells into rat seminiferous tubules was most successful in recipients made cryptorchid and treated with busulfan. In the best experiments, about 55% of rat testes were colonized by mouse cells. Both rat and mouse donor cell-derived spermatogenesis were improved by treatment of rat recipients with leuprolide, a gonadotropin-releasing hormone agonist. The studies indicated that recipient preparation for spermatogonial stem cell transplantation was critical in the rat and differs from the mouse. However, modification of currently used techniques should allow male germ line stem cell transplantation in many species.  相似文献   

4.
The aim of this study was to compare the in vitro effects of glial cell line-derived neurotrophic factor, stem cell factor, granulocyte macrophage-colony stimulating factor, and co-culture with Sertoli cells on the efficiency of adult mouse spermatogonial stem cells colony formation. For these purpose, both Sertoli and spermatogonial cells were isolated from adult mouse testes. The identity of the cells was confirmed through analysis of alkaline phosphatase activity, immunocytochemistry against OCT-4, c-kit, and vimentin, and also by transplantation of these cells in the recipient testes. The isolated spermatogonial cells were treated either with various concentrations of the above mentioned factors or co-cultured with Sertoli cells for 3 wk. The spermatogonial cells of the resulting colonies were transplanted via rete testis into the mouse testes, which were irradiated with 14 Gy. The results indicated that glial cell line-derived neurotrophic factor is the most appropriate factor for in vitro colonization of adult mice spermatogonial cells compared with other cytokines and growth factors. A short-term co-culture with Sertoli cells showed a significant increase in the number and diameter of the colonies compared with the treated growth factors and the control group. We have also demonstrated that mouse spermatogonial stem cells in the colonies after co-culturing with Sertoli cells could induce spermatogenesis in the recipient testes after transplantation.  相似文献   

5.
Germ cell transplantation from large domestic animals into mouse testes   总被引:19,自引:0,他引:19  
Donor-derived spermatogenesis after spermatogonial transplantation to recipient animals could serve as a novel approach to manipulate the male germ line in species where current methods of genetic modification are still inefficient. The objective of the present study was to investigate germ cell transplantation from boars, bulls, and stallions, which are economically important domestic animals, to mouse recipients. Donor testis cells (fresh, cryopreserved, or cultured for 1 month) were transplanted into testes of immunodeficient recipient mice in which endogenous spermatogenesis had been destroyed. Recipient testes were analyzed from 1 to > 12 months after transplantation for the presence of donor germ cells by donor-specific immunohistochemistry. Donor cells were present in most recipient testes with species-dependent differences in pattern and extent of colonization. Porcine donor germ cells formed chains and networks of round cells connected by intercellular bridges but later stages of donor-derived spermatogenesis were not observed. Transplanted bovine testis cells initially appeared similar but then developed predominantly into fibrous tissue within recipient seminiferous tubules. Few equine germ cells proliferated in mouse testes with no obvious difference between cells recovered from a scrotal or a cryptorchid donor testis. The pattern of colonization after transplantation of cultured cells did not resemble spermatogonial proliferation. These results indicate that fresh or cryopreserved germ cells from large animals can colonize the mouse testis but do not differentiate beyond the stage of spermatogonial expansion. Species-specific differences in the compatibility of large animal donors and mouse recipients were detected which cannot be predicted solely on the basis of phylogenetic distance between donor and recipient species.  相似文献   

6.
Retrovirus-mediated modification of male germline stem cells in rats   总被引:10,自引:0,他引:10  
The ability to isolate, manipulate, and transplant spermatogonial stem cells provides a unique opportunity to modify the germline. We used the rat-to-nude mouse transplantation assay to characterize spermatogonial stem cell activity in rat testes and in culture. Our results indicate that rat spermatogonial stem cells can survive and proliferate in short-term culture, although a net loss of stem cells was observed. Rat spermatogonial stem cells also were susceptible to transduction with a retroviral vector carrying a lacZ reporter transgene. Using a 3-day periodic infection protocol, 0.5% of stem cells originally cultured were transduced and produced transgenic colonies of spermatogenesis in recipient mouse testes. The level of transgenic donor-derived spermatogenesis observed in the rat-to-mouse transplantation was similar to levels that produced transgenic progeny in the mouse-to-mouse transplantation. This work provides a basis for understanding the biology of rat spermatogonial stem cells. Development of an optimal rat recipient testis model and application of these methods for germline modification will enable the production of transgenic rats, potentially valuable tools for evaluating genes and their functions. In addition, these methods may be applicable in other species where existing transgenic methods are inefficient or not available.  相似文献   

7.
Stem cell and niche development in the postnatal rat testis   总被引:4,自引:0,他引:4  
Adult tissue stem cells self-renew and differentiate in a way that exactly meets the biological demand of the dependent tissue. We evaluated spermatogonial stem cell (SSC) activity in the developing rat testis and the quality and accessibility of the stem cell niche in wild type, and two busulfan-treated models of rat pup recipient testes using an SSC transplantation technique as a functional assay. While our results revealed a 69-fold increase in stem cell activity during rat testis development from neonate to adult, only moderate changes in SSC concentration were observed, and stem cells from neonate, pup, and adult donor testes produce spermatogenic colonies of similar size. Analysis of the stem cell niche in recipient rat testes demonstrated that pup testes support high levels of donor stem cell engraftment when endogenous germ cells are removed or compromised by busulfan treatment. Fertility was established when rat pup donor testis cells were transplanted into fetal- or pup-busulfan-treated recipient rat pup testes, and the donor genotype was transmitted to subsequent generations. These results provide insight into stem cell/niche interactions in the rat testis and demonstrate that techniques originally developed in mice can be extended to other species for regenerative medicine and germline modification.  相似文献   

8.
Mammalian male germ cells might be generally thought to have infinite proliferative potential based on their life-long production of huge numbers of sperm. However, there has been little substantial evidence that supports this assumption. In the present study, we performed serial transplantation of spermatogonial stem cells to investigate if they expand by self-renewing division following transplantation. The transgenic mouse carrying the Green fluorescent protein gene was used as the donor cell source that facilitated identification and recollection of colonized donor germ cells in the recipient testes. The established colonies of germ cells in the recipient testes were collected and transplanted to new recipients. This serial transplantation of spermatogonial stem cells repopulated the recipient testes, which were successfully performed sequentially up to four times from one recipient to the next. The incubation periods between two sequential transplantations ranged from 55 to 373 days. During these passages, the spermatogonial stem cells showed constant activity to form spermatogenic colonies in the recipient testis. They continued to increase in number for more than a year following transplantation. Colonization efficiency of spermatogonial stem cells was determined to be 4.25% by using Sl/Sl(d) mice as recipients that propagated only undifferentiated type A spermatogonia in their testes. Based on the colonization efficiency, one colony-forming activity was assessed to equate to about 20 spermatogonial stem cells. The spermatogonial stem cells were estimated to expand over 50-fold in 100 days in this experiment.  相似文献   

9.
Human spermatogonial stem cells (SSCs) play critical roles in lifelong maintenance of male fertility and regeneration of spermatogenesis. These cells are expected to provide an important resource for male fertility preservation and restoration. A basic strategy has been proposed that would involve harvesting testis biopsy specimens from a cancer patient prior to cancer therapies, and transplanting them back to the patient at a later time; then, SSCs included in the specimens would regenerate spermatogenesis. To clinically apply this strategy, isolating live human SSCs is important. In this study, we investigated whether CD9, a known rodent SSC marker, is expressed on human male germ cells that can repopulate recipient mouse testes upon transplantation. Testicular tissues were obtained from men with obstructive azoospermia. Using immunohistochemistry, we found that CD9 was expressed in human male germ cells in the basal compartment of the seminiferous epithelium. Following immunomagnetic cell sorting, CD9-positive cells were enriched for germ cells expressing MAGEA4, which is expressed by spermatogonia and some early spermatocytes, compared with unsorted cells. We then transplanted CD9-positive cells into nude mouse testes and detected an approximately 3- to 4-fold enrichment of human germ cells that repopulated mouse testes for at least 4 mo after transplantation, compared with unsorted cells. We also observed that some cell turnover occurred in human germ cell colonies in recipient testes. These results demonstrate that CD9 identifies human male germ cells with capability of long-term survival and cell turnover in the xenogeneic testis environment.  相似文献   

10.
Spermatogenesis is a complex process in which spermatogonial stem cells divide and subsequently differentiate into spermatozoa. This process requires spermatogonial stem cells to self-renew and provide a continual population of cells for differentiation. Studies on spermatogonial stem cells have been limited due to a lack of unique markers and an inability to detect the presence of these cells. The technique of germ cell transplantation provides a functional assay to identify spermatogonial stem cells in a cell population. We hypothesized that vitamin A-deficient (VAD) and hyperthermically treated testes would provide an enriched in vivo source of spermatogonial stem cells. The first model, hyperthermic treatment, depends on the sensitivity of maturing germ cells to high temperatures. Testes of adult mice were exposed to 43 degrees C for 15 min to eliminate the majority of differentiating germ cells. Treated donor testes were 50% of normal adult testis size and, when transplanted into recipients, resulted in a 5.3- and 19-fold (colonies and area, respectively) increase in colonization efficiency compared to controls. The second model, VAD animals, also lacked differentiating germ cells, and testes weights were 25% of control values. Colonization efficiency of germ cells from VAD testes resulted in a 2.5- and 6.2-fold (colonies and area, respectively) increase in colonization compared to controls. Hyperthermically treated mice represent an enriched source of spermatogonial stem cells. In contrast, the low extent of colonization with germ cells from VAD animals raises important questions regarding the competency of stem cells from this model.  相似文献   

11.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

12.
Primate spermatogonial stem cells colonize mouse testes   总被引:17,自引:0,他引:17  
In mice, transplantation of spermatogonial stem cells from a fertile male to the seminiferous tubules of an infertile recipient male results in progeny with donor-derived haplotype. Attempts to extend this approach by transplanting human testis cells to mice have led to conflicting claims that no donor germ cells persisted or that human spermatozoa were produced in the recipient. To examine this issue we used the baboon, a primate in which testis cell populations of several ages could be obtained for transplantation, and demonstrate that donor spermatogonial stem cells readily establish germ cell colonies in recipient mice, which exist for periods of at least 6 mo. However, differentiation of germ cells toward the lumen of the tubule and production of spermatozoa did not occur. The presence of baboon spermatogonial stem cells and undifferentiated spermatogonia in mouse seminiferous tubules for long periods after transplantation indicates that antigens, growth factors, and signaling molecules that are necessary for interaction of these cells and the testis environment have been preserved for 100 million years of evolutionary separation. Because germ cell differentiation and spermatogenesis did not occur, the molecules necessary for this process appear to have undergone greater divergence between baboon and mouse.  相似文献   

13.
Functional roles of spermatogonial stem cells in spermatogenesis are self-renewing proliferation and production of differentiated daughter progeny. The ability to recapitulate these actions in vitro is important for investigating their biology and inducing genetic modification that could potentially lead to an alternative means of generating transgenic animals. The objective of this study was to evaluate the survival and proliferation of frozen-thawed bovine spermatogonial stem cells in vitro and investigate the effects of exogenous glial cell line-derived neurotrophic factor (GDNF). In order to accomplish this objective we developed a bovine embryonic fibroblast feeder cell line, termed BEF, to serve as feeder cells in a coculture system with bovine germ cells. Bovine spermatogonial stem cell survival and proliferation in vitro were evaluated by xenogeneic transplantation into the seminiferous tubules of immunodeficient mice. Bovine germ cells cocultured for 1 wk resulted in significantly more round cell donor colonies in recipient mouse testes compared to donor cells transplanted just after thawing. Bovine germ cells cocultured for 2 wk had fewer colony-forming cells than the freshly thawed cell suspensions or cells cultured for 1 wk. Characterization of the feeder cell line revealed endogenous expression of Gdnf mRNA and protein. Addition of exogenous GDNF to the culture medium decreased the number of stem cells present at 1 wk of coculture, but enhanced stem cell maintenance at 2 wk compared to cultures without added GDNF. These data indicate that frozen-thawed bovine spermatogonial stem cells survive cryopreservation and can be maintained during coculture with a feeder cell line in which the maintenance is influenced by GDNF.  相似文献   

14.
Spermatogonial stem cell transplantation, cryopreservation and culture.   总被引:12,自引:0,他引:12  
Testis cells of a fertile male mouse can be transplanted to the seminiferous tubules of an infertile male, where the donor spermatogonial stem cells will establish spermatogenesis and produce spermatozoa that transmit the donor haplotype to progeny. In addition, stem cells can be cryopreserved for long periods, thereby making male germ lines immortal. Recently, mouse testis cells have been cultured for longer than 3 months and, following transplantation, produced spermatogenesis. These techniques are likely to be applicable to many species, since rat testis cells can be cryopreserved and generate spermatogenesis in the seminiferous tubules of immunodeficient mice.  相似文献   

15.
Gonadotropin-releasing hormone (GnRH)-agonist or antagonist treatment supports recovery of spermatogenesis after irradiation damage in the rat and appears to be beneficial to colonization of recipient testes after spermatogonial transplantation from fertile donors to the testes of infertile recipients in rats and mice. In the present study, we quantified the effect of treatment of recipient mice with the GnRH-agonist leuprolide acetate on the extent of colonization by donor spermatogonial stem cells in the recipient testis. Testis cells from mice carrying transgenes, which produce beta-galactosidase in spermatogenic cells, were used as donor cells for transplantation to allow for quantification of donor spermatogenesis in the recipient testis by staining for enzyme activity. Donor cell colonization 3 months after transplantation was compared between recipients receiving leuprolide in different treatment protocols and untreated control mice. Two injections of leuprolide 4 weeks apart prior to transplantation with as little as 3.8 mg/kg resulted in a pronounced improvement in the number of donor-derived spermatogenic colonies as well as in the in the area of recipient seminiferous tubules occupied by donor cell spermatogenesis. Improved colonization efficiency by treatment with GnRH-agonist can make the technique of spermatogonial transplantation applicable to situations when only low numbers of donor cells are available.  相似文献   

16.
Germ cell transplantation in goats   总被引:19,自引:0,他引:19  
Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat. Isolated donor testis cells were infused into the seminiferous tubules of anesthetized recipient goats through an ultrasonographically-guided catheter inserted into the rete testis. Donor cells were obtained by enzymatic digestion of freshly collected testes from immature goats (either from the recipients' contralateral testis or from unrelated donors). Prior to transplantation, testis cells were labeled with a fluorescent marker to allow identification after transplantation. Recipient testes were examined for the presence and localization of labeled donor cells at 3-week intervals up to 12 weeks after transplantation. Labeled donor cells were found in the seminiferous tubules of all testes, comprising 10-35% of the examined tubules. Histological examination of the recipient testes did not reveal evident tissue damage, except for limited fibrotic changes at the site of needle insertion. Likewise there were no detectable local or systemic signs of immunologic reactions to the transplantations. These results indicate that germ cell transplantation is technically feasible in immature male goats and that donor-derived cells are retained in the recipient testis for at least three months and through puberty. This study represents the first report of germ cell transplantation in goats.  相似文献   

17.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

18.
Stem cells in the male germ line (spermatogonial stem cells [SSCs]) are an important target for male fertility restoration and germ line gene modification. To establish a model system to study the biology and the applications of SSCs in mice, I used a sequential transplantation strategy to analyze the process by which SSCs colonize the stem cell niche after transplantation and to determine the efficiency of the process (homing efficiency). I further analyzed the proliferation kinetics of SSCs after colonization. The number of SSCs gradually decreased during the homing process, and only 12% of SSCs successfully colonized the niche on Day 7 after transplantation, but the number of SSCs increased by Day 14. Thus, homing efficiency of adult mouse SSCs is 12%. These results indicate that SSCs are rapidly lost upon transplantation and require approximately 1 wk to settle into their niches before initiating expansion. Using this SSC homing efficiency, I calculated that approximately 3000 SSCs exist in one normal adult testis, representing approximately 0.01% of total testis cells. Between 7 days and 1 mo after transplantation, SSCs proliferated 7.5-fold. However, they did not significantly proliferate thereafter until 2 mo, and only 8 SSCs supported one colony of donor-derived spermatogenesis from 1 to 2 mo. These results suggest that self-renewal and differentiation of SSCs are strictly regulated in coordination with the progress of an entire unit of regenerating spermatogenesis.  相似文献   

19.
Spermatogenesis is a complex and productive process that originates from stem cell spermatogonia and ultimately results in formation of mature spermatozoa. The stem cell undergoes self-renewal throughout life, but study of its biological characteristics has been difficult because a very small number (2 to 3 in 10(4) cells) exist in the testis and they can only be identified by function. Although the development of the spermatogonial transplantation technique has provided an assay system for stem cells, efficient methods to enrich stem cells have not been available. Here, we examined two infertile mouse models, Steel/Steel(Dickie)(Sl/Sl(d)) and experimental cryptorchid, as a source of testis cell populations enriched in stem cells. The Sl/Sl(d) testis showed little enrichment, which raises questions about how adult stem cell number is determined and about the currently accepted belief that adult stem cells are independent of Sl factor. The cells recovered from cryptorchid testes were enriched for stem cells 25-fold (colonies) or 50-fold (area) compared to wild-type testes. The cryptorchid condition does not affect stem cell activity, but eliminates almost all differentiated cells, and about 1 in 200 cells is a stem cell. Thus, cryptorchid testes provide an important approach for purification and characterization of spermatogonial stem cells.  相似文献   

20.
Mutations in the dominant-white spotting (W; c-kit) and stem cell factor (Sl; SCF) genes, which encode the transmembrane tyrosine kinase receptor and its ligand, respectively, affect both the proliferation and differentiation of many types of stem cells. Almost all homozygous W or Sl mutant mice are sterile because of the lack of differentiated germ cells or spermatogonial stem cells. To characterize spermatogenesis in c-kit/SCF mutants and to understand the role of c-kit signal transduction in spermatogonial stem cells, the existence, proliferation, and differentiation of spermatogonia were examined in the W/Wv mutant mouse testis. In the present study, some of the W/Wv mutant testes completely lacked spermatogonia, and many of the remaining testes contained only a few spermatogonia. Examination of the proliferative activity of the W/Wv mutant spermatogonia by transplantation of enhanced green fluorescent protein (eGFP)-labeled W/Wv spermatogonia into the seminiferous tubules of normal SCF (W/Wv) or SCF mutant (Sl/Sld) mice demonstrated that the W/Wv spermatogonia had the ability to settle and proliferate, but not to differentiate, in the recipient seminiferous tubules. Although the germ cells in the adult W/Wv testis were c-kit-receptor protein-negative undifferentiated type A spermatogonia, the juvenile germ cells were able to differentiate into spermatogonia that expressed the c-kit-receptor protein. Furthermore, differentiated germ cells with the c-kit-receptor protein on the cell surface could be induced by GnRH antagonist treatment, even in the adult W/Wv testis. These results indicate that all the spermatogonial stem cell characteristics of settlement, proliferation, and differentiation can be demonstrated without stimulating the c-kit-receptor signal. The c-kit/SCF signal transduction system appears to be necessary for the maintenance and proliferation of differentiated c-kit receptor-positive spermatogonia but not for the initial step of spermatogonial cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号