首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
We have examined cell-free viral populations in the blood plasma and seminal plasma compartments of men infected with subtype C human immunodeficiency virus type 1 (HIV-1) using the V3-specific heteroduplex tracking assay (V3-HTA). We studied two cohorts of subjects who had visited either a sexually transmitted disease (STD) clinic for genital tract inflammation in the form of urethritis (n = 43) or a dermatology clinic (controls, n = 14) in Malawi. We have previously shown that the presence of urethritis is associated with an eightfold increase in virus load in the seminal plasma compartment (M. S. Cohen et al., Lancet 349:1868-1873, 1997). The purpose of this study was to determine whether genital tract inflammation and its treatment caused genetic instability in cell-free HIV-1 populations. In a cross-sectional analysis at study entry, three-fourths of the STD and control subjects had multiple V3 populations in their blood while 60% of the STD subjects and 79% of the control subjects had multiple V3 populations in their semen. Overall, one-fourth of all of the subjects showed discordance between results with blood and semen specimens when samples were compared for the presence and absence of subpopulations. When differences in the relative levels of abundance of bands were also taken into account, two-fifths of all of the subjects showed discordance between the compartments. Among the subset of subjects in whom multiple virus populations could be detected, half showed discordance between the compartments. There were no differences between STD and control cohorts for these comparisons of the compartments in this cross-sectional analysis at study entry. Longitudinal analysis of the viral populations from two separate clinic visits over 1 to 4 weeks showed that the complexity of each V3 population as measured by Shannon entropy was different in blood and semen at the two time points, indicating that the blood and semen constitute different compartments for HIV-1. The seminal plasma compartment was more dynamic than the blood plasma compartment for the STD subjects who were treated for urethritis, with changes being noted in the presence or absence of V3-HTA bands in the semen of 29% of these subjects but in the blood of only 9% of these subjects. However, the changes were generally small. Overall, our results suggest that 40% of male subjects show discordance between seminal and blood viral populations and that the complexity of each V3 population was different between the two compartments. Both of these results point to the partial independence of the seminal compartment as a viral niche within the body.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) in the male genital tract may comprise virus produced locally in addition to virus transported from the circulation. Virus produced in the male genital tract may be genetically distinct, due to tissue-specific cellular characteristics and immunological pressures. HIV-1 env sequences derived from paired blood and semen samples from the Los Alamos HIV Sequence Database were analyzed to ascertain a male genital tract-specific viral signature. Machine learning algorithms could predict seminal tropism based on env sequences with accuracies exceeding 90%, suggesting that a strong genetic signature does exist for virus replicating in the male genital tract. Additionally, semen-derived viral populations exhibited constrained diversity (P < 0.05), decreased levels of positive selection (P < 0.025), decreased CXCR4 coreceptor utilization, and altered glycosylation patterns. Our analysis suggests that the male genital tract represents a distinct selective environment that contributes to the apparent genetic bottlenecks associated with the sexual transmission of HIV-1.  相似文献   

3.
Despite semen being the main vector of human immunodeficiency virus (HIV) dissemination worldwide, the origin of the virus in this bodily fluid remains unknown. Of particular significance is the persistence of virus release in the semen of a subset of HIV-infected men under antiretroviral therapy, who otherwise show an undetectable blood viral load. It is therefore considered critical to identify the sources of virus shedding in semen for the more efficient control of HIV transmission. Our recent findings indicate HIV infection of several semen-producing organs, including the testis (which represents a pharmacological sanctuary for several antiretroviral drugs). This reinforces phylogenetic observations suggesting that the free viral particles and infected cells contaminating semen are produced within the male genital tract. The fact that HIV replicates within the male genital organs raises several questions: Is one or several of the male genital tract organs responsible for the persistence of HIV in semen despite efficient antiviral therapies? What is the nature of HIV interactions with spermatozoa and testicular germ cells? Recent results established that semen from HIV negative men modifies HIV infectivity: does the seminal fluid from HIV+ men enhance or inhibit the efficiency of HIV sexual transmission?  相似文献   

4.
HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA) levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta) that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1–9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA) in the axillary lymph node (6.48±0.50) were significantly higher than in the genital tract tissues: testis (3.67±2.16; p<0.05), epididymis (3.08±1.19; p<0.0001), prostate (3.36±1.30; p<0.01), and seminal vesicle (2.67±1.50; p<0.0001). Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.  相似文献   

5.
Cells constituting the placental barrier secrete soluble factors that may participate in controlling human immunodeficiency virus type 1 (HIV-1) transmission from the mother to the fetus. In this study, we asked whether placental soluble factors (PSF) could limit cell-cell contact inducing HIV-1 production that occurs after inoculation of HIV-1-infected peripheral blood mononuclear cells (HIV-1+ PBMCs) onto trophoblast-derived BeWo cells grown as tight and polarized barriers in a two-chamber system. The activity of recombinant chemokines and cytokines expressed by placental tissue and of factors secreted by either early or term placentae of HIV-1-negative women, was analyzed. We identified chemokines (RANTES and MIP-1beta) and cytokines (tumor necrosis factor alpha and interleukin-8) that decreased and increased, respectively, viral production in trophoblast barrier cells inoculated with HIV-1+ PBMCs. Unexpectedly, factors secreted by either early or term placentae of HIV-1-negative women enhanced viral production. Nevertheless, the same PSF did not favor infection of trophoblastic barriers with cell-free HIV-1 and strongly reduced viral production in PBMCs infected with cell-free HIV-1. Moreover, PSF contained chemokines (RANTES and MIP-1beta) and a cytokine, leukemia inhibitory factor, exhibiting a strong anti-HIV-1 activity in our model of cell-to-cell infection. Together these data suggested that at the maternal interface the global activity of PSF is related to the synergistic action of several soluble factors with a balance in favor of an enhancing activity on the passage of viruses across the trophoblast barrier. This could explain the presence of viral sequences in trophoblasts in all placentae of HIV-1-infected women.  相似文献   

6.
Sexual contact with HIV-infected semen is a major driving force behind the global HIV pandemic. Little is known regarding the immune correlates of virus shedding in this compartment, although HIV-1-specific CD8+ T cells are present in semen. We collected blood and semen from 27 chronically HIV-infected, therapy-naive men without common sexually transmitted infections or urethral inflammation and measured HIV-1 RNA viral load and cytokine/chemokine levels in both compartments. HIV-1 RNA levels were 10-fold higher in blood than semen, but discordantly high semen shedding was associated with higher semen levels of the proinflammatory cytokines IL-6, IL-8, IL-12, and IFN-gamma. Virus-specific CD8+ T cell epitopes were mapped in blood by IFN-gamma ELISPOT, using an overlapping HIV-1 clade B peptide matrix, and blood and semen CD8+ T cell responses were then assayed ex vivo using intracellular IFN-gamma staining. HIV-specific CD8+ responses were detected in 70% of semen samples, and their frequency was similar to or higher than blood. There was no correlation between the presence of virus-specific CD8+ T cells in semen and levels of HIV-1 RNA shedding. Among participants with detectable CD8+ IFN-gamma semen responses, their relative frequency was not associated with reduced HIV-1 RNA shedding, and their absolute number was correlated with higher levels of HIV-1 RNA semen shedding (r = 0.6; p = 0.03) and of several proinflammatory cytokines. Neither the presence nor the frequency of semen HIV-specific CD8+ T cell IFN-gamma responses in semen correlated with reduced levels of HIV RNA in semen.  相似文献   

7.
8.
Medical assistance to procreation in a couple where one or both parents has hepatitis C viral infection (HCV) raises the issue of the transmission of the infection to the baby and/or of possible contamination of both the technicians and the gemetes or embryos from virus-free parents in the laboratory. It becomes essential to assess transmission risk in Assisted Reproductive Techniques (ART) in order to clearly define the management of couples according to their viral status. To define the HCV transmissibility risk in ART related to the presence of virus in semen from infected infertile men, RNA HCV-detection was performed in sera, and semen and sperm fractions obtained after Percoll gradient centrifugation. RNA HCV was detected in 5% (2/39) of the semen tested: in the raw semen, in the seminal fluid and in the cell pellet but never after Percoll selection. According to these results, we suggest a strategy for HCV infected infertile men who need ART.  相似文献   

9.
Due to the inconsistent effects of human immunodeficiency virus (HIV) on the human male reproduction in previous studies and the impacts of environmental exposures, such as heavy metals, on male reproduction receiving little attention in HIV-infected population, the aim of present study was to investigate whether heavy metals have potential effects on reproductive parameters in HIV-infected men. The current study assessed the associations between semen quality or serum hormone and concentration of the three heavy metal toxicants (lead (Pb), cadmium (Cd), and zinc (Zn)) in seminal, urine, and serum, and 50 HIV-infected men were recruited in the present study. Concentrations of Pb, Cd, and Zn were measured in three fluids by graphite furnace atomic absorption spectrophotometer. Semen analyses were performed according to World Health Organization criteria. Serum samples were analyzed for follicle-stimulating hormone, luteinizing hormone, and testosterone. HIV RNA viral load was determined by HIV virus loads kit. Spearman’s rank correlations were used for correlation analyses. The results showed that the concentrations of Pb, Cd, and Zn were significantly correlated with semen quality and serum hormone. HIV-1 virus loads were significantly associated with increased seminal Pb. However, HIV-1 virus loads were not statistically associated with semen quality and serum hormone. Our findings suggested that environmental heavy metals had potential effects on reproductive parameters in HIV-infected men in China.  相似文献   

10.
The aim of this study was to determine the infectious status of semen and genital tract tissues from male goat naturally infected with the caprine lentivirus. Firstly, polymerase chain reaction (PCR) was used to detect the presence of CAEV proviral-DNA in the circulating mononuclear cells, semen (spermatozoa and non-spermatic cells), and genital tract tissues (testis, epididymis, vas deferens, and vesicular gland) of nine bucks. RT-PCR was used to detect the presence of CAEV viral RNA in seminal plasma. Secondly, in situ hybridization was performed on PCR-positive samples from the head, body, and tail of the epididymis. CAEV proviral-DNA was identified by PCR in the blood cells of 7/9 bucks and in non-spermatic cells of the seminal plasma of 3/9 bucks. No CAEV proviral-DNA was identified in the spermatozoa fraction. The presence of CAEV proviral-DNA in non-spermatic cells and the presence of CAEV in the seminal plasma was significantly higher (p<0.01) in bucks with PCR-positive blood. Two of the three bucks with positive seminal plasma cells presented with at least one PCR-positive genital tract tissue. Proviral-DNA was found in the head (3/9), body (3/9), and tail (2/9) of the epididymis. In situ hybridization confirmed the presence of viral mRNA in at least one of each of these tissues, in the periphery of the epididymal epithelium. This study clearly demonstrates the presence of viral mRNA and proviral-DNA in naturally infected male goat semen and in various tissues of the male genital tract.  相似文献   

11.

Background

Compartmentalization of HIV-1 between the genital tract and blood was noted in half of 57 women included in 12 studies primarily using cell-free virus. To further understand differences between genital tract and blood viruses of women with chronic HIV-1 infection cell-free and cell-associated virus populations were sequenced from these tissues, reasoning that integrated viral DNA includes variants archived from earlier in infection, and provides a greater array of genotypes for comparisons.

Methodology/Principal Findings

Multiple sequences from single-genome-amplification of HIV-1 RNA and DNA from the genital tract and blood of each woman were compared in a cross-sectional study. Maximum likelihood phylogenies were evaluated for evidence of compartmentalization using four statistical tests. Genital tract and blood HIV-1 appears compartmentalized in 7/13 women by ≥2 statistical analyses. These subjects'' phylograms were characterized by low diversity genital-specific viral clades interspersed between clades containing both genital and blood sequences. Many of the genital-specific clades contained monotypic HIV-1 sequences. In 2/7 women, HIV-1 populations were significantly compartmentalized across all four statistical tests; both had low diversity genital tract-only clades. Collapsing monotypic variants into a single sequence diminished the prevalence and extent of compartmentalization. Viral sequences did not demonstrate tissue-specific signature amino acid residues, differential immune selection, or co-receptor usage.

Conclusions/Significance

In women with chronic HIV-1 infection multiple identical sequences suggest proliferation of HIV-1-infected cells, and low diversity tissue-specific phylogenetic clades are consistent with bursts of viral replication. These monotypic and tissue-specific viruses provide statistical support for compartmentalization of HIV-1 between the female genital tract and blood. However, the intermingling of these clades with clades comprised of both genital and blood sequences and the absence of tissue-specific genetic features suggests compartmentalization between blood and genital tract may be due to viral replication and proliferation of infected cells, and questions whether HIV-1 in the female genital tract is distinct from blood.  相似文献   

12.
Genetic analysis of human immunodeficiency virus type 1 (HIV-1) from cases of mother-to-infant transmission were analyzed in an effort to provide insights into the viral selection that may occur during transmission, as well as the timing and source of transmitted viruses. HIV-1 env genes obtained from seven mothers and their perinatally infected infants in Sweden were studied. Five envelope sequence clades (A to E) were found to be represented. We used a heteroduplex tracking assay (HTA) to assess the genetic relatedness between early viral isolates from the infants and serial maternal virus populations taken during pregnancy and at delivery. HTA findings were used to select for DNA sequence analysis maternal virus populations that were either closely or more distantly related to the infant virus. In each case, nucleotide sequence analysis confirmed the genetic relationships inferred by the HTA. Only maternal peripheral blood was sampled, and large sets of maternal specimens throughout pregnancy were generally not available. However, no consistent correlation was found to support the hypothesis that infant viruses should match blood-derived maternal virus genotypes found early in pregnancy if infants were found to be infected at birth or, conversely, that infant viruses should match blood-derived maternal virus genotypes found at delivery if infants were found to be infected only some time later.  相似文献   

13.
SummaryObjectives: Defining the mechanism of infection with human herpesvirus-8 (HHV-8) or Kaposi’s sarcoma associated herpesvirus (KSHV) is an important clinical issue. HHV-8 has been linked to Kaposi’s sarcoma (KS) development in HIV-1-infected individuals, and KS develops in 40% of those infected with both viruses. A series of epidemiological data suggest that sexual transmission is one of the routes of transmission for HHV-8. In our studies, we sought to assess the cellular reservoirs of HHV-8 DNA in the semen of HIV-1-infected men and the potential role of HHV-8 infected spermatozoa in horizontal transmission.Design and methods: A nested polymerase chain reaction (PCR), in situ PCR (ISPCR) and a sodium iodide (NaI) DNA isolation technique that extracts both nuclear and episomal DNA were utilized to amplify specific genes in vitro and within intact cells to evaluate the types of seminal cells infected with HHV-8 in HIV-1-infected and uninfected men.Results HHV-8 was present in the spermatozoa and mononuclear cells of the semen in 64 of 73 (88%) HIV-1 infected individuals. Both the sperms as well as the mononuclear cells of the semen specimens of HIV-1 infected men were found to be infected with HHV-8. Multiplex ISPCR revealed that a significantly higher percentage of semen cells were infected with HHV-8 than HIV-1 (p>0.001). Rare (less than one in a 100,000) sperm cells were co-infected with both viruses. A co-culture of HHV-8 infected sperm with uninfected 293 or Sup-T1 cell lines resulted in an abortive infection of these cells with HHV-8. DNA isolation by NaI yielded 73% of the positive sperm, whereas the standard phenol/chloroform method resulted in significantly lower positives (45%) from the same specimens.Conclusions: Design and methods: Our data strongly suggest a potential sexual/horizontal route of transmission of HHV-8, via the HHV-8 infected sperm and other semen cells, where a large percentage of HIV-1 infected men’s sperm and other semen cells are infected with HHV-8. Co-culture studies have further supported the observations that HHV-8 in the sperm cells is infectious and capable of transmission of the virus to uninfected cells.  相似文献   

14.
Investigation of human immunodeficiency virus type 1 (HIV-1) in the genital tract of women is crucial to the development of vaccines and therapies. Previous analyses of HIV-1 in various anatomic sites have documented compartmentalization, with viral sequences from each location that were distinct yet phylogenetically related. Full-length RNA genomes derived from different compartments in the same individual, however, have not yet been studied. Furthermore, although there is evidence that intrapatient recombination may occur frequently, recombinants comprising viruses from different sites within one individual have rarely been documented. We compared full-length HIV-1 RNA sequences in the plasma and female genital tract, focusing on a woman with high HIV-1 RNA loads in each compartment who had been infected heterosexually and then transmitted HIV-1 by the same route. We cloned and sequenced 10 full-length HIV-1 RNA genomes from her genital tract and 10 from her plasma. We also compared viral genomes from the genital tract and plasma of four additional heterosexually infected women, sequencing 164 env and gag clones obtained from the two sites. Four of five women, including the one whose complete viral sequences were determined, displayed compartmentalized HIV-1 genomes. Analyses of full-length, compartmentalized sequences made it possible to document complex intrapatient HIV-1 recombinants that were composed of alternating viral sequences characteristic of each site. These findings demonstrate that the genital tract and blood harbor genetically distinct populations of replicating HIV-1 and provide evidence that recombination between strains from the two compartments contributes to rapid evolution of viral sequence variation in infected individuals.  相似文献   

15.
Treatment of HIV-1-infected individuals with a combination of anti-retroviral agents results in sustained suppression of HIV-1 replication, as evidenced by a reduction in plasma viral RNA to levels below the limit of detection of available assays. However, even in patients whose plasma viral RNA levels have been suppressed to below detectable levels for up to 30 months, replication-competent virus can routinely be recovered from patient peripheral blood mononuclear cells and from semen. A reservoir of latently infected cells established early in infection may be involved in the maintenance of viral persistence despite highly active anti-retroviral therapy. However, whether virus replication persists in such patients is unknown. HIV-1 cDNA episomes are labile products of virus infection and indicative of recent infection events. Using episome-specific PCR, we demonstrate here ongoing virus replication in a large percentage of infected individuals on highly active anti-retroviral therapy, despite sustained undetectable levels of plasma viral RNA. The presence of a reservoir of 'covert' virus replication in patients on highly active anti-retroviral therapy has important implications for the clinical management of HIV-1-infected individuals and for the development of virus eradication strategies.  相似文献   

16.

Objectives

Antiretroviral therapy (ART) decreases HIV-1 RNA levels in semen and reduces sexual transmission from HIV-1-infected men. Our objective was to study the time course and magnitude of seminal HIV-1 RNA decay after initiation of efavirenz-based ART among 13 antiretroviral-naïve Kenyan men.

Methods

HIV-1 RNA was quantified (lower limit of detection, 120 copies/mL) in blood and semen at baseline and over the first month of ART. Median log10 HIV-1 RNA was compared at each time-point using Wilcoxon Signed Rank tests. Perelson’s two-phase viral decay model and nonlinear random effects were used to compare decay rates in blood and semen.

Results

Median baseline HIV-1 RNA was 4.40 log10 copies/mL in blood (range, 3.20–5.08 log10 copies/mL) and 3.69 log10 copies/mL in semen (range, <2.08–4.90 log10 copies/mL). The median reduction in HIV-1 RNA by day 28 was 1.90 log10 copies/mL in blood (range, 0.56–2.68 log10 copies/mL) and 1.36 log10 copies/mL in semen (range, 0–2.66 log10 copies/mL). ART led to a decrease from baseline by day 7 in blood and day 14 in semen (p = 0.005 and p = 0.006, respectively). The initial modeled decay rate was slower in semen than in blood (p = 0.06). There was no difference in second-phase decay rates between blood and semen.

Conclusions

Efavirenz-based ART reduced HIV-1 RNA levels more slowly in semen than in blood. Although this difference was of borderline significance in this small study, our observations suggest that there is suboptimal suppression of seminal HIV-1 RNA for some men in the early weeks of treatment.  相似文献   

17.
18.
Human immunodeficiency virus type 1 (HIV-1) exists as a complex population of multiple genotypic variants in persons with chronic infection. However, acute HIV-1 infection via sexual transmission is a low-probability event in which there is thought to be low genetic complexity in the initial inoculum. In order to assess the viral complexity present during primary HIV-1 infection, the V1/V2 and V3 variable regions of the env gene were examined by using a heteroduplex tracking assay (HTA) capable of resolving these genotypic variants. Blood plasma samples from 26 primary HIV-1-infected subjects were analyzed for their level of diversity. Half of the subjects had more than one V1/V2 viral variant during primary infection, indicating the frequent transmission of multiple variants. This observation is inconsistent with the idea of infrequent transmission based on a small transmitting inoculum of cell-free virus. In chronically infected subjects, the complexity of the viral populations was even greater in both the V1/V2 and the V3 regions than in acutely infected subjects, indicating that in spite of the presence of multiple variants in acute infection, the virus does pass through a genetic bottleneck during transmission. We also examined how well the infecting virus penetrated different anatomical compartments by using the HTA. Viral variants detected in blood plasma were compared to those detected in seminal plasma and/or cerebral spinal fluid of six individuals. The virus in each of these compartments was to a large extent identical to virus in blood plasma, a finding consistent with rapid penetration of the infecting variant(s). The low-probability transmission of multiple variants could be the result of transient periods of hyperinfectiousness or hypersusceptibility. Alternatively, the inefficient transfer of a multiply infected cell could account for both the low probability of transmission and the transfer of multiple variants.  相似文献   

19.
To explore the mechanism of sexual transmission of human immunodeficiency virus type 1 (HIV-1), we compared HIV-1 gp120 sequences in longitudinal samples from five acute seroconvertors with those from their corresponding sexual partners (transmitters). We used a quantitative homoduplex tracking assay to compare the overall genetic composition of HIV-1 quasispecies in each transmission pair and to track the transmitted viruses during the acute and asymptomatic stages of HIV-1 infection. In the chronically infected transmitters, HIV-1 variants in genital secretions differed from those in blood and variants in cells differed from those in cell-free plasma, indicating remarkable sequence heterogeneity in these subjects as well as compartmentalization of the virus in different bodily sites. Conversely, two of five seroconvertors had only a few related variants and three of five harbored only one viral population, indicating that in these subjects the transmitted viruses were typically homogeneous. Transmitted viruses were evident in the donor's seminal plasma (one of five cases) and even more so in their seminal cells (three of five cases), suggesting that both cell-associated and cell-free viruses can be transmitted. In every pair studied, the transmitted variant(s) represents only a minor population in the semen of the corresponding transmitter, thereby providing evidence that HIV-1 selection indeed occurs during sexual transmission.  相似文献   

20.
Highly active antiretroviral therapy (HAART) reduces the viral burden in human immunodeficiency virus type 1 (HIV-1) infected patients below the threshold of detectability. However, substantial evidence indicates that viral replication persists in these individuals. In this paper we examine the ability of several biologically motivated models of HIV-1 dynamics to explain sustained low viral loads. At or near drug efficacies that result in steady state viral loads below detectability, most models are extremely sensitive to small changes in drug efficacy. We argue that if these models reflect reality many patients should have cleared the virus, contrary to observation. We find that a model in which the infected cell death rate is dependent on the infected cell density does not suffer this shortcoming. The shortcoming is also overcome in two more conventional models that include small populations of cells in which the drug is less effective than in the main population, suggesting that difficulties with drug penetrance and maintenance of effective intracellular drug concentrations in all cells susceptible to HIV infection may underlie ongoing viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号