首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
Background aimsMesenchymal stromal cells (MSC) may be useful in a range of clinical applications. The placenta has been suggested as an abundant, ethically acceptable, less immunogenic and easily accessible source of MSC. The aim of this study was to evaluate the capacity of induced placental MSC to differentiate into neurotrophic factor-producing cells (NTF) and their protective effect on neuronal cells.MethodsMSC were isolated from placentas and characterized by fluorescence-activated cell sorting (FACS). The cells underwent an induction protocol to differentiate them into NTF. Analysis of the cellular differentiation was done using polymerase chain reactions (PCR), immunocytochemical staining and enzyme-linked immunosorbent assays (ELISA). Conditioned media from placental MSC (PL-MSC) and differentiated MSC (PL-DIFF) were collected and examined for their ability to protect neural cells.ResultsThe immunocytochemical studies showed that the cells displayed typical MSC membrane markers. The cells differentiated into osteoblasts and adipocytes. PCR and immunohistology staining demonstrated that the induced cells expressed typical astrocytes markers and neurotrophic factors. Vascular endothelial growth factor (VEGF) levels were higher in the conditioned media from PL-DIFF compared with PL-MSC, as indicated by ELISA. Both PL-DIFF and PL-MSC conditioned media markedly protected neural cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. PL-DIFF conditioned medium had a superior effect on neuronal cell survival. Anti-VEGF antibodies (Bevacizumab) reduced the protective effect of the conditioned media from differentiated and undifferentiated MSC.ConclusionsThis study has demonstrated a neuroprotective effect of MSC of placental origin subjected to an induction differentiation protocol. These data offer the prospect of using placenta as a source for stem cell-based therapies.  相似文献   

2.
Background aimsStem cells (SC) in different locations have individual characteristics. Important questions to be answered include how these specialties are generated, what the mechanism underlying their generation is, and what their biologic and clinical merits are. A basic approach to answering these questions is to make comparisons between the differences and similarities among the various SC types. They may focus on aspects of biologic marker discovery, capacity of proliferation and differentiation, along with other characteristics. The aim of this study was to characterize in detail the SC isolated from pancreatic islet (PI) and compare their properties with bone marrow (BM)-derived mesenchymal stromal cells (MSC) of the rat.MethodsImmunophenotypic characteristics, proliferation capacities, telomerase activities, pluripotent-related gene expressions, ultrastructure and the potential for multilineage differentiation of PI SC and BM MSC were studied.ResultsWe found that PI SC expressed markers of embryonic SC (Oct-4, Sox-2 and Rex-1) and had a high proliferation capacity, proven also by high telomerase activities. Surprisingly, markers belonging to differentiated cells were expressed by these cells in a constitutive manner. PI SC ultrastructure showed more developed and metabolically active cells.ConclusionsThe immunocytochemical identification of both PI SC and BM MSC was demonstrated to be typical MSC. Without stimulation of differentiation markers of adipogenic, chondrogenic, neurogenic, myogenic and osteogenic cells in these SC, the expression of those markers might explain their multilineage differentiation potential. We suggest that, by reason of the respectively high telomerase activity in PI SC, they could be better candidates than BM MSC for cell replacement therapy of type 1 diabetes.  相似文献   

3.
4.
Advances in bioengineering, material chemistry, and developmental biology have led to the design of three-dimensional (3D) culture systems that better resemble the surrounding structure and chemistry of the in situ niches of cells in tissues. This study was designed to characterize and compare porcine adipose-derived stem cells (ADSC) and bone-marrow-derived stem cells (BMSC) induced to differentiate toward osteogenic and adipogenic lineages in vitro by using a 3D alginate hydrogel. The morphology and gene expression of the two cell populations during differentiation were analyzed. Both ADSC and BMSC showed morphological evidence of osteogenic and adipogenic differentiation. Expression patterns of genes characteristic of the onset of osteogenic differentiation (ALP, COL1A1, SPARC, SPP1) were low at the beginning of culture and generally increased during the period of differentiation up to 28 days in culture. Expression of genes associated with adipogenic differentiation (ACSL1, ADFP, ADIPOQ, CD36, DBI, DGAT2, PPARG, SCD) was consistently increased in ADSC cultured in alginate hydrogel relative to the start of differentiation. However, adipogenic gene expression of BMSC cultured in alginate hydrogel was more limited when compared with that of ADSC. Evaluation of cell numbers (via the MTT staining assay) suggested a greater viability of BMSC under osteogenic conditions in alginate hydrogels than under adipogenic conditions, whereas ADSC had greater viability under adipogenic conditions than under osteogenic conditions. This study thus provides an important initial evaluation of ADSC and BMSC seeded and differentiated toward the osteogenic and adipogenic cell lineages in a 3D alginate hydrogel in vitro.  相似文献   

5.
6.

Background

The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability.We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers.

Results

Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham’s F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham’s F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions.

Conclusions

In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.
  相似文献   

7.
8.
Background aimsTransplantation of mesenchymal stromal cells (MSC) derived from bone marrow (BM) or adipose tissue is expected to become a cell therapy for stroke. The present study compared the therapeutic potential of adipose-derived stem cells (ASC) with that of BM-derived stem cells (BMSC) in a murine stroke model.MethodsASC and BMSC were isolated from age-matched C57BL/6J mice. These MSC were analyzed for growth kinetics and their capacity to secrete trophic factors and differentiate toward neural and vascular cell lineages in vitro. For in vivo study, ASC or BMSC were administrated intravenously into recipient mice (1 × 105 cells/mouse) soon after reperfusion following a 90-min middle cerebral artery occlusion. Neurologic deficits, the degree of infarction, expression of factors in the brain, and the fate of the injected cells were observed.ResultsASC showed higher proliferative activity with greater production of vascular endothelial cell growth factor (VEGF) and hepatocyte growth factor (HGF) than BMSC. Furthermore, in vitro conditions allowed ASC to differentiate into neural, glial and vascular endothelial cells. ASC administration showed remarkable attenuation of ischemic damage, although the ASC were not yet fully incorporated into the infarct area. Nonetheless, the expression of HGF and angiopoietin-1 in ischemic brain tissue was significantly increased in ASC-treated mice compared with the BMSC group.ConclusionsCompared with BMSC, ASC have great advantages for cell preparation because of easier and safer access to adipose tissue. Taken together, our findings suggest that ASC would be a more preferable source for cell therapy for brain ischemia than BMSC.  相似文献   

9.

Background

Although donor age-related effects of characteristics of mesenchymal stem cells (MSC), such as a decrease in the proliferation and differentiation capacity and an increase of senescence and apoptosis, are evident, such effects are generally less prominent in adipose-derived stem cells (ASC). Using a hormone and growth factor rich medium (KFSM), this study cultured ASC from abdominal subcutaneous fat of 27 adult females in three age groups: 30-39 y, 40-49 y and 50-60 y, and investigated the growth and differentiation characteristics.

Results

The derived ASC had an immunophenotype similar to that of bone marrow derived MSC (BMSC). They could be stably expanded with an average population doubling time of 21.5 ± 2.3 h. Other than a higher pre-adipogenic commitment and a lower adipogenic differentiation capability in ASC derived from the old age group, other characteristics including proliferation rate, doubling time, telomere length, as well as the osteogenic and chondrogenic differentiation capacity were the same regardless of the donor’s age.

Conclusions

The study demonstrates a promising proliferation and differentiation capabilities of ASC regardless of the donor’s age. The compromised adipogenic potential in the older donors could be a benefit for their application in regeneration therapy.  相似文献   

10.
Background aimsHuman mesenchymal stromal cells (MSC) are multipotent cells possessing self-renewal capacity, long-term viability and multilineage potential. We analyzed the effect of four different medium supplements on the expansion and differentiation of adipose tissue-derived MSC (ADSC) in order to avoid the use of xenogeneic serum.MethodsWe compared fetal bovine serum (FBS) with 10% human platelet-rich plasma (hPRP), 3% human platelet-poor plasma (hPPP) and with a cytokine cocktail composed of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and platelet-derived growth factor-bb (PDGFbb) added to 3% hPPP. This mixture was developed testing EGF, bFGF, granulocyte–colony-stimulating factor (G-CSF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF-I), PDGFbb and transforming growth factor (TGF)-β1 added alone or in combination with hPPP.ResultsOur data demonstrate that the addition of EGF, bFGF and PDGFbb, in a medium supplemented with hPPP, obtainable from 150–200 mL whole autologous blood, supports ADSC expansion better than FBS, as confirmed by cumulative population doublings (cPD; 15.0 ± 0.5 versus 9.4 ± 2.8). The addition of human platelet-rich plasma (hPRP) further improved ADSC proliferation (cPD 20.0 ± 1.2), but the achievement of hPRP presented a major drawback, requiring 1000–1200 mL autologous or donor whole blood. The medium supplements did not influence ADSC phenotype: they expressed CD105, CD90 and CD44 lacking hematopoietic antigens. The exposure to the proposed cocktail or to hPRP increased adipogenic and osteogenic differentiation.ConclusionsThe addition of EGF, bFGF and PDGFbb to hPPP could ensure a sufficient number of ADSC for clinical applications, avoiding the use of animal serum and representing a novel approach in regenerative medicine.  相似文献   

11.
Background aimsMesenchymal stromal cells (MSC) exhibit non-specific hematopoietic cell and/or stromal cell markers (e.g. CD73, CD105 and CD166) that have been used to identify MSC by flow cytometry. Because a neural glial antigen, NG2 (a progenitor cell marker in the central nervous system), is expressed by several tissue cells originating in the mesenchyme but not hematopoietic cells, it might be useful for isolating and identifying MSC. We investigated NG2 expression on culture-expanded MSC by flow cytometry.MethodsHuman bone marrow (BM) samples taken from 12 donors were cultured for MSC to be used in up to nine serial passages. Using flow cytometry, the neural glial antigen NG2 and commonly used MSC markers CD73, CD105 and CD166, were analyzed on the surface of culture-expanded MSC. The multipotential differentiation of the MSC was examined by adipogenic and osteogenic induction.ResultsThe percentage of cells positive for NG2 was similar to the percentages of cells positive for CD73, CD105 and CD166 in all passages of BM samples. The mean fluorescent intensities of NG2 did not change with culture passage. The MSC was successfully differentiated into adipogenic and osteogenic lines. The cells showed no karyotypic abnormalities.ConclusionsNG2 seems to be a promising marker for investigating the biology of MSC.  相似文献   

12.
Background aimsAmniotic fluid (AF) is a well-known source of stem cells. However, there have been no reports regarding equine AF stem cells. We have isolated equine AF-derived multipotent stem cells (MSC) (eAF-MSC) and show that these cells exhibit self-renewal ability and multilineage differentiation.MethodsAF was obtained from thoroughbred mares and mononuclear cells (MNC) were isolated by Ficoll–Paque density gradient. We measured the cumulative population doubling level (CPDL) and characterized the immunophenotype by flow cytometry. To investigate differentiation ability, a trilineage differentiation assay was conducted.ResultseAF-MSC could be isolated and the proliferation level was high. eAF-MSC presented typical MSC phenotypic markers, as determined by flow cytometry. Moreover, eAF-MSC showed a trilineage differentiation capability.ConclusionsEquine AF is a good source of MSC. Furthermore, eAF-MSC may be useful as a cell therapy application for horses.  相似文献   

13.
Background aimsFor many years the human heart has been considered a terminally differentiated organ with no regenerative potential after injury. Recent studies, however, have cast doubt on this long-standing dogma. The objective of this study was to investigate the presence of and characterize mesenchymal stromal cells (MSC) in the adult mouse heart. The impact of MSC on growth and differentiation of adult cardiac stem cells (CSC) was also analyzed.MethodsA combination of lineage-negative/c-kit-negative (Lin?/c-kit?) immunoselection with a plastic-adhesion technique was used to isolate cardiac-derived MSC. The differentiation capacity and expression of surface markers were analyzed. To investigate the impact of MSC on growth and differentiation of adult CSC, Green Fluorescent Protein (GFP+) adult CSC were co-cultured with GFP? cardiac-derived MSCResultsMSC were present in the adult mouse heart and they met the criteria established to define mouse MSC. They expressed surface markers and were able to differentiate, in a controlled manner, into multiple lineages. In addition, cardiac-derived MSC promoted the survival and expansion of adult CSC in vitroConclusionsMSC can be isolated from the mouse heart and they promote growth and differentiation of adult CSC. The findings from this study could have a significant beneficial impact on future heart failure treatment. Co-culture and co-implantation of cardiac-derived MSC with adult CSC could provide extensive cardiac regeneration and maintenance of the CSC population after implanted into the heart.  相似文献   

14.
《Cytotherapy》2014,16(6):789-799
Background aimsAdipose tissue–derived stem cells (ADSCs) are thought to have great potential in regenerative medicine. A xenoprotein-free culture and handling system is desirable. To date, there is only little and contradictory information about the influence of the different types of human serum on ADSC proliferation and differentiation.MethodsFirst, ADSCs were cultured in media containing regular human serum (HS plus) or fetal calf serum (FCS plus) with supplementation of growth factors for three passages. During passage 4, ADSC proliferative activity and adipogenic, osteogenic and chondrogenic differentiation ability was quantified. Second, ADSCs were cultured with three different human sera (regular human serum [HS], human serum from platelet-poor plasma [SPPP] or human serum from platelet-rich plasma [SPRP]) without supplementation of platelet-derived growth factor and assessed accordingly. The growth factor content of the different types of human sera was determined by means of multiplex protein assay and enzyme-linked immunosorbent assay.ResultsThe different sera did not affect ADSC doubling time significantly (P < 0.05). Specific glycerol-3-phosphat-dehydrogenase activity was significantly lower in cultures with SPRP (P < 0.01) compared with the other media compositions. Extracellular calcium deposition was significantly higher in cells differentiated in cultures with HS or SPPP compared with those with SPRP, HS plus or FCS (P < 0.01). Glycosaminoglycan content and collagen 2 were highest in cells cultured with SPRP (P < 0.001).ConclusionsCulturing ADSCs in human serum appears to be a reasonable and efficient alternative compared with FCS. With respect to the outcome of a sighted clinical application, it appears to be feasible to handle the cells in a serum suitable for the intended later use.  相似文献   

15.
Background aimsAn extensive debate about the clinical benefits of autologous platelet concentrates used as a treatment option for patients with orthopedic injuries is ongoing. The aim of this study was to determine whether different compositions of platelet concentrates may affect the osteogenic differentiation of bone marrow stromal cells (BMSC).MethodsPure platelet-rich plasma (P-PRP) and leukocyte-PRP (L-PRP) were characterized for platelet and leukocyte content. As an indicative marker of the delivery of growth factors (GFs), the release of basic fibroblast growth factor (bFGF) from platelet gel (PG) was measured at 1, 18, 48 and 72 h and at 7 d. The ability of different PGs to induce proliferation and differentiation of BMSC was evaluated by using bioactivity assays.ResultsThe platelet recovery was significantly higher in L-PRP, either fresh or frozen. PGs derived from L-PRP and P-PRP showed significant differences in terms of bFGF release and biological activity. bFGF release was faster both in fresh and frozen L-PRP preparations. Moreover, L-PRP samples were able to induce a significantly higher proliferation of BMSC compared with P-PRP or PPP samples. Even though all PG preparations allowed the deposition of mineral nodules in BMSC cultures, the mineralization activity correlated significantly with bFGF levels.ConclusionsThe biological activity of platelet concentrates differs according to preparation technique, which affects platelet and leukocyte content and GF availability. Because GF levels are not always optimal in subjects with defective bone healing, composition and bioactivity of PRP should be analyzed to test the reliability and potential effectiveness of the regenerative treatment.  相似文献   

16.
Background aimsThe immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSC) could prove to be a potential therapeutic approach for prolongation of survival of cell xenotransplantation. Adipose (Ad) MSC from genetically modified pigs could be an abundant source of pig donor-specific MSC.MethodsPig (p) MSC were isolated from adipose tissue of α1,3-galactosyltransferase gene knock-out pigs transgenic for human (h) CD46 (GTKO/hCD46), a potential source of islets. After characterization with differentiation and flow cytometry (FCM), AdMSC were compared with bone marrow (BM) MSC of the same pig and human adipose-derived (hAd) MSC. The modulation of human peripheral blood mononuclear cell (hPBMC) responses to GTKO pig aortic endothelial cells (pAEC) by different MSC was compared by measuring 3H-thymidine uptake. The supernatants from the AdMSC cultures were used to determine the role of soluble factors.ResultsGTKO/hCD46 pAdMSC (i) did not express galactose-α1,3-galactose (Gal) but expressed hCD46, (ii) differentiated into chondroblasts, osteocytes and adipocytes, (iii) expressed stem cell markers, (iv) expressed lower levels of Swine Leucocyte Antigen I (SLAI), Swine Leucocyte Antigen II DR (SLAIIDR) and CD80 than pAEC before and after pig interferon (IFN)-γ stimulation. The proliferative responses of hPBMC to GTKO/hCD46 pAdMSC and hAdMSC stimulators were similar, and both were significantly lower than to GTKO pAEC (P < 0.05). The proliferation of hPBMC to GTKO pAEC was equally suppressed by GTKO/hCD46 pAdMSC and hAdMSC (P > 0.05). The supernatant from GTKO/hCD46 pAdMSC did not suppress the human xenoresponse to GTKO pAEC, which was cell–cell contact-dependent.ConclusionsInitial evidence suggests that genetically modified pAdMSC function across the xenogeneic barrier and may have a role in cellular xenotransplantation.  相似文献   

17.
In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell’s chondrogenic induction.  相似文献   

18.
Leydig cells (LCs) are the primary source of testosterone in the testis, and testosterone deficiency caused by LC functional degeneration can lead to male reproductive dysfunction. LC replacement transplantation is a very promising approach for this disease therapy. Here, we report that human adipose derived stem cells (ADSCs) can be differentiated into Leydig‐like cells using a novel differentiation method based on molecular compounds. The isolated human ADSCs expressed positive CD29, CD44, CD59 and CD105, negative CD34, CD45 and HLA‐DR using flow cytometry, and had the capacity of adipogenic and osteogenic differentiation. ADSCs derived Leydig‐like cells (ADSC‐LCs) acquired testosterone synthesis capabilities, and positively expressed LC lineage‐specific markers LHCGR, STAR, SCARB1, SF‐1, CYP11A1, CYP17A1, HSD3B1 and HSD17B3 as well as negatively expressed ADSC specific markers CD29, CD44, CD59 and CD105. When ADSC‐LCs labelled with lipophilic red dye (PKH26) were injected into rat testes which were selectively eliminated endogenous LCs using ethylene dimethanesulfonate (EDS, 75 mg/kg), the transplanted ADSC‐LCs could survive and function in the interstitium of testes, and accelerate the recovery of blood testosterone levels and testis weights. These results demonstrated that ADSCs could be differentiated into Leydig‐like cells by few defined molecular compounds, which might lay the foundation for further clinical application of ADSC‐LC transplantation therapy.  相似文献   

19.
Background aimsAmniotic fluid (AF) contains stem cells with high proliferative and differentiative potential that might be an attractive source of multipotent stem cells. We investigated whether human AF contains mesenchymal stem cells (MSC) and evaluated their phenotypic characteristics and differentiation potential in vitro.MethodsAF was harvested during routine pre-natal amniocentesis at 14–16 weeks of pregnancy. AF sample pellets were plated in α-minimum essential medium (MEM) with 10% fetal bovine serum (FBS). We evaluated cellular growth, immunophenotype, stemness markers and differentiative potential during in vitro expansion. Neural progenitor maintenance medium (NPMM), a medium normally used for the growth and maintenance of neural stem cells, containing hFGF, hEGF and NSF-1, was used for neural induction.ResultsTwenty-seven AF samples were collected and primary cells, obtained from samples containing more than 6 mL AF, had MSC characteristics. AF MSC showed high proliferative potential, were positive for CD90, CD105, CD29, CD44, CD73 and CD166, showed Oct-4 and Nanog molecular and protein expression, and differentiated into osteoblasts, adypocytes and chondrocytes. The NPMM-cultured cells expressed neural markers and increased Na+ channel density and channel inactivation rate, making the tetrodotoxin (TTX)-sensitive channels more kinetically similar to native neuronal voltage-gated Na+ channels.ConclusionsThese data suggest that AF is an important multipotent stem cell source with a high proliferative potential able to originate potential precursors of functional neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号