首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
生活污水尾水灌溉对麦秸还田水稻幼苗及土壤环境的影响   总被引:2,自引:0,他引:2  
通过盆栽试验研究了麦秸还田下生活污水尾水灌溉对水稻幼苗和土壤环境的影响.测定了不同处理水稻幼苗根系形态、根系活力、分蘖、株高、干物质累积量、土壤亚铁、有机酸、酶活性.结果表明: 与自来水灌溉相比,不施化肥氮时,生活污水尾水灌溉显著提高了水稻移栽后41 d的分蘖数和根系活力;正常施氮肥时,生活污水尾水灌溉显著促进了水稻根系和植株生长,根长、根表面积、根体积、根系活力、水稻分蘖数和干物质累积量均显著高于自来水灌溉处理.生活污水尾水灌溉处理显著降低了土壤Fe2+和有机酸含量,土壤脲酶、过氧化氢酶活性等显著提高.生活污水尾水灌溉和施氮耦合能有效缓解秸秆还田初期对水稻幼苗生长的不利影响,改善水稻生长状况,提升土壤肥力和质量.  相似文献   

2.
不同育秧方式和插植密度下晚籼稻群体动态结构存在差异。旱育秧群体分蘖速度快,分蘖能力强。稀植可促进个体分蘖多发、有效穗数增多,但旱育稀植并无分蘖早发的优势。旱育稀植使主茎基部叶片变短而上部叶片变长,生育后期叶面积消长平稳,地上部干物质积累较多。旱育秧、稀植都使主茎叶总数增多,全生育期延长。  相似文献   

3.
本试验于1995年晚季初步研究了水、旱育秧方式和不同插植密度下根系活力的变化趋势及与地上部生长发育的关系。结果表明:(1)旱育秧苗根系活力明显高于水育秧,根系活力与白根数、地上部苗体干/鲜重比值呈显著正相关,与褐根数、苗高、叶龄和百苗干、鲜物重呈负相关。(2)旱育单苗移植处理的根系活力在水稻整个生育过程中均高于旱育多苗移植处理,水秧单苗和多苗移植处理。生育后期根系活力与主茎功能叶片叶绿素含量和叶面积系数分别呈极显著正相关和正相关,旱育秧苗的这些特性有利于移植后叶片与分蘖的快速形成及生育后期延缓叶片衰老,提高籽粒充实度。同时提出,在水肥管理上应适当加大后期穗肥比例,改善光照条件和土壤的通气排水状况,以便充分发挥旱育稀植秧苗的增产优势。  相似文献   

4.
于1996年早季研究了湿润与旱育秧方式在稀植(2苗/科)和多植(4苗/科)情况下超高产早籼品种特三矮2号在本田生长期的群体动态结构与产量表现。与多植比较,稀植的比叶重较大,中期叶面积系数较小,每穗颖花数较多;但有效分蘖数较少。与湿润育秧比较,旱育秧每科穗数较多,抽穗后群体保持较高的叶面积系数和干物质生产力;但生育期较长。旱育稀植的谷草比较高。  相似文献   

5.
We examined the effect of arbuscular mycorrhizal fungi inoculation at the nursery stage on the growth and nutrient acquisition of wetland rice (t Oryza sativa L.) under field and pot conditions. Seedlings were grown on -ray sterilized paddy soil in two types of nurseries, namely dry nursery and wet nursery, with or without arbuscular mycorrhizal fungi (AMF) inoculation which was a mixture of indigenous AMF (t Glomus spp.) spores collected from the paddy field. Five-to-six week old seedlings were transplanted to the unsterilized soil under field and pot, respectively. Mycorrhizal seedlings had higher shoot biomass under both nursery conditions 5 weeks after sowing. Mycorrhizal colonization and sporulation were 2 to 3 times higher in the dry nursery than the wet nursery at the transplanting stage. Mycorrhizal colonization of plants inoculated in the nursery remained higher than those not inoculated under both field and pot conditions. Sporulation after transplanting to field conditions was about 10 times higher than in the pot. Inoculated plants produced higher biomass at maturity under field conditions, and the grain yield was 14-21% higher than those not inoculated. Conversely, grain yield and shoot biomass were not significantly influenced by AMF colonization under pot conditions. For plants originating from the dry nursery, N, P, Zn and Cu concentrations of field-grown plants at harvest were significantly increased by preinoculation with AMF over those left uninoculated. We conclude that the AMF inoculation at the nursery stage under both dry and wet conditions increased growth, grain yield and nutrient acquisition of wetland rice under field conditions.  相似文献   

6.
Abstract

Breeders are trying to develop true submergence-tolerant genotypes for lowland irrigated and/or rainfed areas, where rice is often affected by short-term submergence. This study was conducted to evaluate the submergence tolerance, response of antioxidative defense systems to hypoxic and re-aerated conditions, and growth and survival percentage among 19 rice genotypes. The rice seedlings submerged into concrete tanks for 10 days exhibited decreased activities of antioxidant enzymes. The antioxidant enzymes, superoxide dismutase, catalase, and ascorbate peroxidase increased, whereas polyphenol oxidase and glutathione reductase decreased in subsequent re-aerated situation in tolerant genotypes. On the other hand, the activities of enzymes decreased greatly in susceptible genotypes under hypoxic and re-aerated conditions. Complete submergence of the seedling increased the plant height of 12 genotypes. However, it decreased the dry matter production. Genotypes having better root and shoot growth maintained higher dry weight and exhibited better survival than did others. The results indicated that genotypes tolerant of flash flood maintained higher activities of antioxidant enzymes and dry matter accumulation to protect against postanoxic injury.  相似文献   

7.
Decreases in nutrient availability after loss of soil-water saturation are significant constraints to productivity in lowland rainfed rice soils. The effectiveness of soil amendments like lime and straw in ameliorating these constraints are poorly understood. This pot experiment was conducted in Cambodia to investigate changes in soil chemical properties and nutrient uptake by rice after applying lime or straw to continuously flooded or intermittently flooded soil. In continuously flooded soils, exchangeable Al decreased to below 0.2 cmolc/kg. Liming (pH 6.5–6.8) the continuously flooded soil decreased the levels of acetate extractable Fe and P, plant P uptake and shoot dry matter, but had no effect on either Bray-1 or Olsen extractable P values. By contrast, the addition of straw (3.5 g dry straw/kg soil) increased Bray-1, Olsen, and acetate extractable P, plant P uptake, shoot P, and shoot dry matter. The non-amended soils became strongly acidic after loss of soil water saturation: extractable Al increased to 1.0 cmolc/kg, a potentially harmful level for rice. By contrast, extractable P decreased markedly under loss of soil water saturation as did plant P uptake, shoot P, and shoot dry matter. With loss of soil water saturation, liming substantially depressed the levels of Al but it did not increase plant P uptake, shoot P, and shoot dry matter. Straw addition not only decreased extractable Al levels to well below 0.6 cmolc/kg under loss of soil water saturation, but it also increased extractability of soil P, plant P uptake, shoot P, and shoot dry matter. Thus, in rainfed environments, the incorporation of straw may be more effective than liming to pH 6.8 for minimising the negative effects of temporary loss of soil-water saturation on P availability, P uptake, and growth of rice.  相似文献   

8.
During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young seedlings at 4-leaf stage (18-day-old seedling), but had significant effects on root growth in old seedlings with 6-7 leaves (27-day-old seedling) at suitable seeding densities (65-125g m~(-2)). There were satistically significant differences (at 0.01 or 0.05 levels)between treatments in root number and rooting ability of root-pruned seedlings.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) colonisation of plant root facilitates the absorption of nutrients such as phosphorus (P) and enhances plant biotic and abiotic resistance generally. However, arbuscular mycorrhiza (AM) colonisation decreases with application of chemical fertiliser. Here, we investigated whether AMF inoculation in nurseries would facilitate AM colonisation and take physiological and ecological functions in watermelon (Citrullus lanatus) in the field. Pot experiments were carried out to study the change of AMF colonised seedling on physiology and gene expression in nursery site. Field experiments were performed to investigate the effect of nursery AMF inoculation on yield, quality and disease resistance of watermelon in the field. The results showed that nursery‐inoculated seedlings produced more dry matter and root surface area than non‐inoculated seedlings. Expression of the secretory purple acid phosphatase (PAP) genes ClaPAP10 and ClaPAP26 was up‐regulated following AMF colonisation. Accordingly, acid phosphatase activities at the root surface and P concentrations in seedling were enhanced. After transplantation to the field, the shoot dry matter and P concentration in old stem were higher in the nursery AMF inoculated seedlings than that in non‐AMF inoculated seedling. AMF inoculation also induced increase of yields and decrease of wilt disease indexes and soluble sugar content. In addition, acid phosphatase activities and AMF spore densities were increased by nursery‐inoculation in watermelon rhizosphere soil in the field. In conclusion, nursery colonisation AMF seedling enhanced watermelon growth and yield by improving the root growth and P acquisition in nursery cultivating stage, as well as optimised soil properties in the field. Nursery cultivation of watermelon seedling with AMF was an effective technique to reduce wilt disease in continuous cropped management in watermelon.  相似文献   

10.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

11.
以3月直接在培养池中播种培育的侧柏种基盘苗作对照,将同期播种的侧柏种基盘苗进行悬空培养,于6月、8月和10月分别移栽到培育池(分别称为种基盘苗、6月移栽苗、8月移栽苗、10月移栽苗),并于翌年3月挖根,研究不同培育时间对移栽后侧柏幼苗根系生长和分布的影响。结果表明:苗木株高、根分布最大深度、根和地上部干重由大到小依次为:6月移栽苗>8月移栽苗>种基盘苗>10月移栽苗。根冠比由大到小依次为6月移栽苗>8月移栽苗>10月移栽苗>种基盘苗,但除了种基盘苗与6月移栽苗之间差异性显著外,其它处理之间差异性不显著。随着悬空培育时间的延长,空气断根限制了侧柏主根的生长,促进了侧根生长,降低了主侧根长度比。但经悬空培育后,任何处理的移栽苗都没有发生根系盘绕现象,移栽后主根的再生没有受到影响。  相似文献   

12.
In the southern United States, much of the emphasis in bottomland restoration is placed on establishing an oak-dominated forest. Artificial regeneration is an alternative for restoration on cleared lands and where a desirable seed source is not present. Currently the standard procedure for seedling preparation is to prune the roots prior to transplanting in the field. It is not fully known what effect(s) root pruning has on transplanted seedlings. In addition, bottomland restoration efforts inherently take place on floodplains. The potential interaction between root pruning and flooding on seedling performance is not known. This study consisted of two separate but related laboratory experiments. The purpose of the first experiment was to quantify the effects of various percentages of root removal and varying soil moisture regimes on transplanted Nuttall oak seedlings (Quercus nuttallii Palmer). Root pruning treatments consisted of removal of roots at 0%, 25% and 75% while soil moisture regime was maintained at non-flooded or periodically flooded conditions. Plant gas exchange, growth, and survival were measured. Root pruning alone had adverse effects on height growth during the first 72 days following transplanting. Periodic flooding also produced adverse effects on stomatal conductance (p = 0.0002), height growth (p = 0.005), and survival (p = 0.02). Photosynthetic data indicated that as pruning intensified in the periodically flooded seedlings, photosynthetic rates decreased. In contrast, as pruning intensified in the non-flooded seedlings, photosynthesis increased. This demonstrated that pruning rate had a varying effect on photosynthesis dependent upon soil moisture condition. Experiment 2 focused on the effects of varying degrees of root pruning on new root formation. The seedlings were grown under laboratory conditions, harvested at 0, 10, 20, and 30 days after treatment initiation, and analyzed for new root formation. Results of Experiment 2 indicated no difference in new root formation, root length, or root biomass due to the pruning treatment. Overall, our results from both experiments indicated that root pruning had no detectable long-term adverse effects on growth and survival of seedlings under drained soil conditions; however, as results from Experiment 1 demonstrated, if seedlings were planted in periodically flooded conditions, root pruning produced adverse effects. Thus, in restoration efforts utilizing Nuttall oak seedlings, the planting strategy and pruning rate should be carefully evaluated based on the knowledge of sites' hydrology. Alternatively, on sites with unpredictable flooding both pruned and unpruned seedlings may be utilized to ensure survival.  相似文献   

13.
Dry direct‐seeded rice (DSR) cultivation is widely spreading in tropical Asia, but drought and nutrient deficiency stresses often cause crop failure in rainfed lowlands. The objective of this study was to dissect the physio‐morphological characteristics associated with crop establishment and early vigour of DSR under drought and P deficiency conditions in the Philippines. It was found that new drought‐resistant cultivars bred for DSR (Rc348 and Rc192) had faster germination and sprout growth than popular irrigated rice cultivars (Rc222 and Rc10) under soil water deficit due to rapid moisture acquisition by the germinating seeds from drying soils. There was a significant correlation between seed moisture content and the reduction in seed dry weight, and between reduction in seed dry weight and shoot elongation under both control and drought stress treatments at the germination stage. At the seedling stage, the root growth of Rc348 under drought tended to be more vigorous with its higher root‐to‐shoot ratio compared to Rc222 and Rc10. The seedling vigour of Rc348 under P deficiency was also greater than that of Rc222 due to its greater root growth and P uptake. The yields of Rc348 and Rc192 grown under rainfed condition at the target drought‐prone site where a dry spell of 13 days occurred during crop establishment were higher (4.0–4.1 t ha?1) than the yield of Rc10 (3.0 t ha?1). These results suggest that quick germination and seedling vigour with quick root anchorage and great nutrient uptake capacity, even with limitations of soil moisture and nutrients, would be important traits for DSR in rainfed lowlands.  相似文献   

14.
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.  相似文献   

15.
以籼型水稻特三矮为材料,初步研究了水、旱育秧方式和不同基本苗插植密度下生长过程中晚季籼稻冠层的透光率。研究表明:单苗移植的透光率的下降速度高于多苗移植;旱育秧移植的透光率下降速度大于水育秧移植;遮阴生长的其透光率大于不遮阴的。自幼穗分化期起至黄熟期,四种育秧移栽方式的透光率基本相同。  相似文献   

16.
Kawano N  Ito O  Sakagami J 《Annals of botany》2009,103(2):161-169

Background and Aims

Reducing damage to rice seedlings caused by flash flooding will improve the productivity of rainfed lowland rice in West Africa. Accordingly, the morphological and physiological responses of different forms of rice to complete submergence were examined in field and pot experiments to identify primary causes of damage.

Methods

To characterize the physiological responses, seedlings from a wide genetic base including Oryza sativa, O. glaberrima and interspecific hybrids were compared using principle component analysis.

Key Results

Important factors linked to flash-flood tolerance included minimal shoot elongation underwater, increase in dry matter weight during submergence and post-submergence resistance to lodging. In particular, fast shoot elongation during submergence negatively affected plant growth after de-submergence. Also shoot-elongating cultivars showed a strong negative correlation between dry matter weight of the leaves that developed before submergence and leaves developing during submergence.

Conclusions

Enhancement of shoot elongation during submergence in water that is too deep to permit re-emergence by small seedlings represents a futile escape strategy that takes place at the expense of existing dry matter in circumstances where underwater photosynthetic carbon fixation is negligible. Consequently, it compromises survival or recovery growth once flood water levels recede and plants are re-exposed to the aerial environment. Tolerance is greater in cultivars where acceleration of elongation caused by submergence is minimal.Key words: Africa, flash floods, Oryza glaberrima, rainfed lowland, rice, shoot elongation, stress tolerance, submergence  相似文献   

17.
Root restriction may be of importance for productivity in both forestry and agriculture. To study the physiological effects of root restriction in European alder ( Alnus glutinosa Gaertn.), seedlings were grown in aerated liquid culture under one of four root volumes to induce the following levels of root restriction: 1.5, 6,16 and 500 ml. Root restriction for 96 days reduced shoot elongation, plant dry weight, leaf area and chlorophyll levels and increased leaf area/root dry weight ratio and correlative bud inhibition in seedlings. The initial reduction in root/shoot ratios of severely restricted seedlings was followed by a reduction in leaf water potential, the development of internal water deficits in the upper shoots, a reduction in stomatal opening and transpiration rates and, eventually, stomatal closure. Severe prolonged root restriction (1.5 ml root volume) resulted in a decline in seedling vigour and ultimately, senescence as determined by increased electrical impedance ratios, followed by visible leaf senescence and later, by whole plant senescence. Of the severely restricted seedlings, 40% were dead after 96 days of restriction. The results suggest that imbalanced root/shoot ratios caused the development of internal water stress and the consequent reduction in stomatal aperture, culminating in leaf and whole plant senescence.  相似文献   

18.
The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in tissue water relations, gas exchange, and growth, related with the acclimation process in the seedlings, which could provide better resistance to drought and stress conditions following planting.  相似文献   

19.
In order to assess the benefits of superior rooting ability of rice (Oryza sativa L.) for growth after transplanting under water-limiting conditions, genetic differences in the rooting ability of rice seedlings 30 d after sowing, with their visible roots either pruned or not pruned, were quantified by several root parameters 4 d after transplanting (DAT), under flooded or non-flooded paddy fields (four treatments in total), together with production traits at maturity. Ninety-eight recombinant inbred lines from the two japonica ecotypes, a lowland variety Otomemochi, and an upland variety Yumenohatamochi, were genotyped with 107 simple sequence repeat (SSR) markers. Otomemochi in general produced more adventitious roots, partitioned a greater proportion of biomass to roots, and had a greater increment of root dry weight (DeltaRW) at 4 DAT than Yumenohatamochi, but these variety differences were less clear under non-flooded conditions without root pruning. Several quantitative trait loci (QTLs) associated with rooting ability were identified mainly in chromosomes 1, 4, and 6 across the four treatments or in combined analysis. On the other hand, QTLs for DeltaRW around RM2357 in chromosome 5 and for maximum new root length in RM215-RM205 in chromosome 9 were found only under root pruning treatments and under non-flooded conditions without root pruning, respectively. Greater DeltaRW was associated with higher head dry weight per hill at maturity only in the non-flooded and root-pruning treatments. This study suggests the importance of rooting ability after transplanting and, possibly, other mechanisms for adaptation to non-flooded conditions.  相似文献   

20.
Waterlogging is an important constraint of global production of rape. The effects of seed film coating with 0.0075% uniconazole on the growth and physiology was investigated using seedlings from three varieties of rape (Brassica napus L.) subjected to waterlogging. While seed coating with uniconazole had no significant effect on germination percentage during waterlogging stress, it enhanced root vigour, increased root length, root volume and root dry weight. It also significantly enhanced leaf dry weight and ratio of root to shoot, but induced a significant decrease in shoot height and stem dry weight. Seed film coating with uniconazole also significantly increased the activities of the antioxidant enzymes, POD, CAT and SOD, and soluble sugar concentration during waterlogging. Thus, it suggests that seed film coating with uniconazole at a suitable concentration can improve rape seedling growth and increase seedling establishment during waterlogging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号