首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lanzhou lily (Liliumdavidii var. unicolor) is the best edible lily as well as a traditional medicinal plant in China. The microbes associated with plant roots play crucial roles in plant growth and health. However, little is known about the differences of rhizosphere microbes between healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants. The objective of this study was to compare the rhizosphere microbial community and functional diversity of healthy and wilted plants, and to identify potential biocontrol agents with significant effect. Paired end Illumina Mi-Seq sequencing of 16S rRNA and ITS gene amplicons was employed to study the bacterial and fungal communities in the rhizosphere soil of Lanzhou lily plants. BIOLOG technology was adopted to investigate the microbial functional diversity. Our results indicated that there were major differences in the rhizosphere microbial composition and functional diversity of wilted samples compared with healthy samples. Healthy Lanzhou lily plants exhibited lower rhizosphere-associated bacterial diversity than diseased plants, whereas fungi exhibited the opposite trend. The dominant phyla in both the healthy and wilted samples were Proteobacteria and Ascomycota, i.e., 34.45 and 64.01 %, respectively. The microbial functional diversity was suppressed in wilted soil samples. Besides Fusarium, the higher relative abundances of Rhizoctonia, Verticillium, Penicillium, and Ilyonectria (Neonectria) in the wilted samples suggest they may pathogenetic root rot fungi. The high relative abundances of Bacillus in Firmicutes in healthy samples may have significant roles as biological control agents against soilborne pathogens. This is the first study to find evidence of major differences between the microbial communities in the rhizospheric soil of healthy and wilted Lanzhou lily, which may be linked to the health status of plants.  相似文献   

2.
The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.  相似文献   

3.
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.  相似文献   

4.
Dynamics of the composition of the microbial community was studied during start-up of a single-stage completely mixed constant flow laboratory setup for ammonium removal by the nitritation/anammox process from the filtrate of digested sludge of the Kuryanovo wastewater treatment plant (KWTP), Moscow. To decrease the period of the start-up, the setup was initially inoculated with two types of activated sludge (nitrifying sludge from a KWTP aeration tank and sludge from a sequencing batch reactor enriched with anammox bacteria). The start-up and adjustment stage was therefore decreased to 35–40 days, and nitrogen removal efficiency reached 80% after 120 days of the setup operation. Taxonomic analysis of the composition of the microbial community was carried out by pyrosequencing of the 16S rRNA fragments obtained using the universal and planctomycetes-specific primers. In the course of adaptation of activated sludge to increasing nitrogen load, microbial community of the setup became less diverse and more specialized. The contribution of anammox bacteria of the family Brocadiaceae, closely related to Candidatus “Brocadia caroliniensis,” increased gradually. Members of the order Nitrosomonadales were involved in ammonium oxidation to nitrite. While nitrite-oxidizing bacteria of the genus Nitrospira were also detected, their share decreased with accumulation of the activated sludge. The contribution of other bacteria varied as well: the shares of the phyla Ignavibacteria, Chloroflexi, and Acidobacteria increased significantly (up to 13, 12, and 10%, respectively of the total number of reads), while relative abundance of the Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Synergistetes, Aminicenantes, Thermotogae, and Cloacimonetes decreased. Thus, application of pyrosequencing made it possible to monitor succession of the bacterial community involved in nitrogen removal by nitritation/anammox process.  相似文献   

5.
The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545–2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.  相似文献   

6.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

7.
The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.  相似文献   

8.
Introduced predators have caused some of the largest documented impacts of non-native species. Interactions among predators can have complex effects, leading to both synergistic and antagonistic outcomes. Complex interactions with native predators could play an important role in mediating the impact of non-native predators. We explore the role of the native predator context on the effect of the introduced predatory cladoceran Bythotrephes longimanus. While post-invasion impacts have been well described, studies have largely ignored the role of native predators. We used a field mesocosm experiment to determine whether Bythotrephes’ impact on prey communities is influenced by the presence of the ubiquitous native predatory insect larvae Chaoborus. The two predators exhibited niche complementarity as no change in total zooplankton prey abundance was detected across predator treatments. Rather, copepod abundances increased with decreasing abundances of Chaoborus, while cladocerans decreased with increasing abundances of Bythotrephes. Thus, the replacement of Chaoborus with Bythotrephes led to changes in the overall community structure of the zooplankton prey, but had little effect on prey total abundance. More interestingly, we found evidence of biotic resistance of impact, that is, the impact of Bythotrephes on the cladoceran community was altered when the two predators co-occurred. Specifically, the predation effect of Bythotrephes was more restricted to the shallower regions of the water column in the presence of Chaoborus, leading to a reduced impact on deeper dwelling prey taxa. Overall, our results demonstrate that the native predator context is important when trying to understand the effect of non-native predators and that variation in native predator abundances and assemblages could explain variation in impact across invaded habitats.  相似文献   

9.

Background

Dictyostelid cellular slime molds (dictyostelids) are common inhabitants of the soil and leaf litter layer of fields and forests, along with animal dung, where they feed mostly on bacteria. However, reports on the species diversity of dictyostelids in South Asia, particularly Thailand, are limited. The research reported in this paper was carried out to increase our knowledge of the species diversity of this group of organisms in northern Thailand.

Results

Forty soil samples were collected at four localities in northern Thailand to assess the species richness of dictyostelids. These samples yielded five dictyostelid isolates that were not morphologically consistent with any described species. Based on molecular signatures, all five of these isolates were assigned to the family Cavenderiaceae, genus Cavenderia. All five share a number of morphological similarities with other known species from this family. The new taxa differ from previously described species primarily in the size and complexity of their fruiting bodies (sorocarps). This paper describes these new species (Cavenderia aureostabilis, C. bhumiboliana, C. protodigitata, C. pseudoaureostipes, and C. subdiscoidea) based on a combination of morphological characteristics and their phylogenetic positions.

Conclusions

At least 15 taxa of dictyostelids were obtained from the four localities in northern Thailand, which indicates the high level of species diversity in this region. Five species were found to be new to science. These belong to the family Cavenderiaceae, genus Cavenderia, and were described based on both morphology and phylogeny.
  相似文献   

10.
The gut microbiota plays important roles in the health and well-being of animals, and high-throughput sequencing facilitates exploration of microbial populations in the animal gut. However, previous studies have focused on fecal samples instead of the gastrointestinal tract. In this study, we compared the microbiota diversity and composition of intestinal contents of weaned piglets treated with Lactobacillus reuteri or chlortetracycline (aureomycin) using high-throughput sequencing. Nine weaned piglets were randomly divided into three groups and supplemented with L. reuteri, chlortetracycline, or saline for 10 days, and then the contents of three intestinal segments (jejunum, colon, and cecum) were obtained and used for sequencing of the V3–V4 hypervariable region of the 16S rRNA gene. The microbiota diversity and composition in the jejunum were different from those in the colon and cecum among the three treatments. In the jejunum, treatment with L. reuteri increased the species richness of the microbiota, as indicated by the ACE and Chao1 indexes, compared with the chlortetracycline group, in which several taxa were eliminated. In the colon and cecum, relative abundances of the phylum Firmicutes and the genus Prevotella were higher in the chlortetracycline group than in the other groups. Distances between clustered samples revealed that the L. reuteri group was closer to the chlortetracycline group than the control group for jejunum samples, while colon and cecum samples of the L. reuteri group were clustered with those of the control group. This study provides fundamental knowledge for future studies such as the development of alternatives to antibiotics.  相似文献   

11.
Farmed sea cucumbers (Apostichopus japonicus) of the same age displayed significantly different body sizes and weights under the same farming conditions. To examine the gut bacterial diversity of sea cucumbers and whether the growth differences between them were related to intestinal microbiota, the bacterial species from intestinal samples of 30 farmed A. japonicus from the same tank (15 large sea cucumbers vs. 15 small sea cucumbers) were characterized based on 16S rRNA gene analysis by means of high throughout sequencing. The results showed that bacterial phylotypes in both sizes of sea cucumbers were closely related to Proteobacteria, Verrucomicrobia, Bacteroidetes, Actinobacteria, Firmicutes, Cyanobacteria, Planctomycete, and Spirochaetes, of which Proteobacteria were predominant (>50%). There were no significant differences in the relative abundances of each bacterial phylotype between the two groups, except for Actinobacteria (P < 0.05). In addition, different species uniquely belonging to all three tested samples in the large group and the small group were found. It was interestingly that Vibrio were absent from both groups. It is likely that the differences in the abundances of Actinobacteria and different species in the two groups may be related to their remarkable disparities in body sizes.  相似文献   

12.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   

13.
Molecular genetic techniques (NGS sequencing and quantitative PCR) were used to determine the composition of the cecal bacterial community of broiler chickens fed with different mixed fodder. The cecal microbiome exhibited taxonomic diversity, with both typical inhabitants of avian intestine belonging to the families Clostridiaceae, Eubacteriaceae, and Lactobacillaceae and to the phylum Bacteroidetes, and new unidentified taxa, as well as bacteria of the families Lachnospiraceae and Ruminococcaceae, which were previously considered restricted to the rumen microbiota. Contrary to traditional concepts, enterococci and bifidobacteria were among the minor components of the community, lactate-fermenting species were absent, and typical avian pathogens of the genus Staphylococcus were detected but seldom. Members of the family Suterellaceae and the genus Gallibacterium, which are responsible for avian respiratory infections, were also detected. Significant fluctuations of abundance and composition of microbial groups within the cecal community and of the parameters of broiler productivity were found to occur depending on the feed allowance. Cellulose content in the feed had the most pronounced effect on the composition and structure of bacterial communities. Decreased cellulose content resulted in a decrease of bacterial abundance by an order of magnitude and in increased ratios of members of the phylum Bacteroidetes and the family Clostridiaceae, which possess the enzymes degrading starch polysaccharides. Abundance of the normal inhabitants of avian intestine belonging to the genus Lactobacillus and the order Bacillales decreased, while the share of Escherichia and members of the family Sutterellaceae increased, including some species capable of causing dysbiotic changes in the avian intestine. No significant change in the abundance of cellulolytics of the families Ruminococcaceae, Lachnospiraceae, and Eubacteriaceae was observed.  相似文献   

14.
Ficus (Moraceae) is a keystone group in tropical and subtropical forests with remarkable diversity of species and taxonomical challenges as a consequence of fig–pollinator coevolution. Ficus subsect. Frutescentiae includes about 30 species that are predominantly shrubs or small trees with Terminalia branching. Many of these species are difficult to delimit morphologically, and the group includes a tangle of uncertain taxa and incorrectly applied names. We conducted a phylogenetic analysis with internal and external transcribed spacer data (ITS and ETS) and data from 18 polymorphic microsatellite loci to evaluate the species status of the most perplexing members of this subsection. The results confirm the monophyly of subsect. Frutescentiae, with F. pedunculosa as sister to the rest. The F. erecta complex comprises approximately 17 taxa: F. erecta, F. abelii, F. boninsimae, F. nishimurae, F. iidaiana, F. gasparriniana var. laceratifolia, F. gasparriniana var. viridescens, F. pyriformis, F. stenophylla, F. fusuiensis, F. fengkaiensis, F. sinociliata, F. tannoensis, F. vaccinioides, F. formosana, F. pandurata, and F. periptera. The last five of these were supported as good species, while the others were not well supported by the present evidence. Evidence also supported the status of the non-F. erecta complex species including. F. pedunculosa, F. ischnopoda, F. heteromorpha, and F. variolosa. Ficus filicauda and F. neriifolia are possibly conspecific. The species status of F. potingensis should be restored and it should be treated as a member of section Eriosycea. Identification of the remaining taxa (F. gasparriniana var. esquirolii, F. ruyuanensis, F. daimingshanensis, F. chapaensis, F. changii, F. trivia, and F. tuphapensis) and their relationships to the F. erecta complex were not clarified. As a whole, only ten species in this subsection are confirmed, one is excluded, one is synonymous, and the others are either unresolved or short of samples. There appears to be a consistent genetic background among these unresolved groups, which suggests that repeated hybridization (as a result of pollinator host shifts) has filled up the interspecific gaps during the fig–pollinator coevolution process.  相似文献   

15.
The diatom assemblages of the surface sediments have been studied in 53 urban ponds and lakes of St. Petersburg for the first time. In total, 350 species and infraspecific taxa have been registered; the species of Achnanthidium, Cocconeis, Cyclostephanos, Cyclotella, Gomphonema, Lemnicola, Navicula, Nitzschia, and Stephanodiscus genera were the most common. The wide distribution of small centric planktonic taxa, Cyclostephanos dubius, C. invisitatus, Cyclotella pseudostelligera, Stephanodiscus hantzschii, and S. minutulus, is preconditioned by the depletion of dissolved silica, which is a result of the high phosphorus load. The high abundance of macrophytes in the shallowest sites favors the dominance of epiphytic Fragilaria, Staurosira, and Staurosirella taxa. Bottom-living diatoms in the shallow eutrophic and hypereutrophic urban ponds are light-limited; this is a result of either macrophytes or phytoplankton development. Alkaliphilous and alkalibiontic species prevail among the pH-indicative species, while eutraphentic and hypereutraphentic diatoms, as well as those thriving in a wide range of trophic conditions, dominate over other trophic groups. The β- and α-mesosaprobic species are the most common saprobity-indicative taxa.  相似文献   

16.
Trichoderma species form endophytic associations with plant roots and may provide a range of benefits to their hosts. However, few studies have systematically examined the diversity of Trichoderma species associated with plant roots in tropical regions. During the evaluation of Trichoderma isolates for use as biocontrol agents, root samples were collected from more than 58 genera in 35 plant families from a range of habitats in Malaysian Borneo. Trichoderma species were isolated from surface-sterilised roots and identified following analysis of partial translation elongation factor-1α (tef1) sequences. Species present included Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma guizhouense, Trichoderma reesei, Trichoderma strigosum and Trichoderma virens. Trichoderma asperellum/T. asperelloides, Trichoderma harzianum s.l. and T. virens were the most frequently isolated taxa. tef1 sequence data supported the recognition of undescribed species related to the T. harzianum complex. The results suggest that tropical plants may be a useful source of novel root-associated Trichoderma for biotechnological applications.  相似文献   

17.
18.
From the Bavarian Early/Middle Miocene (MN5) site Sandelzhausen, nine species of carnivoran mammals are identified including the hemicyonine ursid Hemicyon stehlini, the amphicyonids Amphicyon cf. major and Pseudarctos bavaricus, the mustelids Ischyrictis zibethoides and Martes cf. munki, the mephitid Proputorius pusillus, the viverrid Leptoplesictis cf. aurelianensis, the felid Pseudaelurus romieviensis, and finally the recently described barbourofelid Prosansanosmilus eggeri. With these taxa present, Sandelzhausen shows a carnivoran community typical, though deprived, for the Lower to Middle Miocene of Europe, but different from roughly contemporary Mediterranean faunas such as those from Çandir or Pa?alar in Turkey.  相似文献   

19.
Intertidal mudflats are unique, highly productive ecosystems. Boleophthalmus pectinirostris and Periophthalmus magnuspinnatus are common fish species that are distributed in the intertidal mudflats of the Yangtze Estuary in China. They perform important ecological functions and have different feeding strategies. Herein, we studied the intestinal microbial diversity and structure of wild B. pectinirostris and P. magnuspinnatus with different sexes and feeding strategies during their breeding season. Gut samples of B. pectinirostris and P. magnuspinnatus individuals (female:male ratio?=?1:1) were collected and subjected to high-throughput DNA sequencing. The results showed Proteobacteria was the most dominant phylum in all the four sample groups: 73.5% in the males and 52.6% in the females of B. pectinirostris and 40.2% in the males and 40.9% in the females of P. magnuspinnatus. Aeromonas, Shewanella, Halomonas, and Acinetobacter of the phylum Proteobacteria were dominant genera in all the sample groups and accounted for 62.13% of the ten dominant genera. The diversity of the intestinal microflora in the omnivorous P. magnuspinnatus was significantly higher (P?<?0.05) than that in the herbivorous B. pectinirostris. Beta diversity, including PCoA and UPGMA of unweighted UniFrac distances, showed that B. pectinirostris samples were clustered together, and P. magnuspinnatus samples were clustered together, implying the effect of the feeding habits on the microbial community structure is more considerable than that of sex.  相似文献   

20.
Species morphological changes can be mutually influenced by environmental or biotic factors, such as competition. South American canids represent a quite recent radiation of taxa that evolved forms very disparate in phenotype, ecology and behaviour. Today, in the central part of South America there is one dominant large species (the maned wolf, Chrysocyon brachyurus) that directly influence sympatric smaller taxa via interspecific killing. Further south, three species of similar sized foxes (Lycalopex spp.) share the same habitats. Such unique combination of taxa and geographic distribution makes South American dogs an ideal group to test for the simultaneous impact of climate and competition on phenotypic variation. Using geometric morphometrics, we quantified skull size and shape of 431 specimens belonging to the eight extant South American canid species: Atelocynus microtis, Cerdocyon thous, Ch. brachyurus, Lycalopex culpaeus, L. griseus, L. gymnocercus, L. vetulus and Speothos venaticus. South American canids are significantly different in both skull size and shape. The hypercarnivorous bush dog is mostly distinct in shape from all the other taxa while a degree of overlap in shape—but not size—occurs between species of the genus Lycalopex. Both climate and competition impacts interspecific morphological variation. We identified climatic adaptations as the main driving force of diversification for the South American canids. Competition has a lower degree of impact on their skull morphology although it might have played a role in the past, when canid community was richer in morphotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号