首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The objective of this study was to design a new staining procedure for human disc tissue for visualizing both collagen and proteoglycan-matrix components on the same histology section. Weigert's hematoxylin, alcian blue and picrosirius red were combined to produce distinctive staining of collagen (red), proteoglycans (blue) and cellular elements of the intervertebral disc. This novel stain reveals sharp details of collagen composition in the perilacunar, territorial and intraterritorial extracellular matrix, and concomitantly demonstrates the presence of proteoglycan accumulations around cells in the lacunar spaces and in the extracellular matrix. These details reveal variations within the tissue that would not be apparent with routine stains.  相似文献   

2.
An extracellular matrix (ECM) lies between the upper and lower epithelial layers of the wing imaginal discs of moths. Organization and composition of this extracellular matrix, as revealed by staining with ruthenium red, tannic acid, and alcian blue, changes in concert with levels of hormones in the haemolymph. The ECM of the wing imaginal disc is an environment for cellular movements. Reorganization of the matrix and increase in ecdysteroid level is coupled with the proximal----distal migration of tracheal cells as well as the distal----proximal outgrowth of sensory neurons.  相似文献   

3.
Lumican belongs to the small leucine-rich repeat proteoglycan (SLRP) gene family and has been reported to exist in the cornea, intervertebral disc and tendon. Lumican plays a significant role in the assembly and regulation of collagen fibres. The human temporomandibular joint (TMJ) disc is made up of fibrocartilage with an extracellular matrix (ECM) composed of collagen and proteoglycans. The existence and behaviour of lumican have not been studied in the human TMJ disc. Therefore, we used immunohistochemical methods to detect lumican, CD34 and vascular endothelial growth factor (VEGF) and histochemical staining with toluidine blue in 13 human TMJ specimens (10 surgically removed and 3 obtained from autopsy). In both normal and deformed discs we observed staining with toluidine blue. We found that the area of metachromasia inside the deformed disc was uneven and expression of lumican was strong in the areas negative for metachromasia. Staining of VEGF and CD34 inside the deformed disc was seen. We confirmed the expression of lumican in the human TMJ disc and showed that a large number of fibroblast-like cells existed in the area of strong lumican expression. These new findings about the behaviour of lumican suggest that it may play a key role in the generation of a new collagen network by fibroblast-like cells.Key words: TMJ disc, lumican, CD34, VEGF, immunohistochemistry, metachromasia.  相似文献   

4.
Human bone marrow-derived mesenchymal stem cells (MSCs) have been shown to differentiate into distinct mesenchymal tissues including bone and cartilage. The capacity of MSCs to replicate undifferentiated and to mature into cartilaginous tissues suggests these cells as an attractive cell source for cartilage tissue engineering. Here we show that the stimulation of human bone marrow-derived MSCs with recombinant bone morphogenetic protein-2 (BMP2) results in chondrogenic lineage development under serum-free conditions. Histological staining of proteoglycan with Alcian blue and immunohistochemical staining of cartilage-specific type II collagen revealed the deposition of typical cartilage extracellular matrix components. Semi-quantitative real-time gene expression analysis of characteristic chondrocytic matrix genes, such as cartilage link protein, cartilage oligomeric matrix protein, aggrecan, and types I, II, and IX collagen, confirmed the induction of the chondrocytic phenotype in high-density culture upon stimulation with BMP2 and transforming growth factor-beta3 (TGFbeta3). Histologic staining of mineralized extracellular matrix with von Kossa, immunostaining of type X collagen (typical for hypertrophic chondrocytes), and gene expression analysis of osteocalcin and adipocyte-specific fatty acid binding protein (aP2) further documented that BMP2 induced chondrogenic lineage development and not osteogenesis and/or adipogenesis in human MSCs. These results suggest BMP2 as a promising candidate for tissue engineering approaches regenerating articular cartilage on the basis of mesenchymal progenitors from bone marrow.  相似文献   

5.
Y Atoji  Y Kitamura  Y Suzuki 《Acta anatomica》1990,139(2):151-153
The perineuronal extracellular matrix of the canine superior olivary nuclei was examined by the histochemical method. The extracellular matrix was stained with Alcian blue (pH 1.0 and 2.5), high iron diamine and ruthenium red. The staining intensity of Alcian blue in the extracellular matrix was remarkably reduced after chondroitinase ABC digestion but not after that of heparitinase or hyaluronidase. These results indicate that the extracellular matrix consists of proteoglycans and contains the chondroitin sulfate proteoglycan.  相似文献   

6.
Summary The localization of proteoglycans in the predentin of the rat incisor was investigated by ultrastructural histochemistry. Ruthenium red stained the cell coat of the odontoblasts as well as intracellular vesicles. There was also a staining of the extracellular matrix, but not of collagen fibers in the predentin. Treatment with the enzyme hyaluronidase prior to staining with ruthenium red abolished the staining of the vesicles and the extracellular matrix but not that of the cell coat. Bismuth nitrate and phosphotungstic acid gave similar staining of odontoblast vesicles and extracellular matrix. It is likely that the stained structures contain proteoglycans. The importance of these proteoglycans and their ultrastructural localization are discussed in relation to intracellular transport and the calcification process.  相似文献   

7.
Alterations in the composition of intervertebral disc extracellular matrix, mainly collagen and proteoglycans, may cause changes in mechanical properties of the disc, leading to dysfunction, nerve root compression, and herniation with severe clinical manifestations. Matrix metalloproteinases may be involved in degradation by hydrolysing extracellular matrix components. Inhibitors of matrix metalloproteinases, in contrast, function in the maintenance of degradation control. In this study, we investigated: (i) whether the level of matrix degradation correlated with the duration of the symptomatic disease, (ii) roles of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) in intervertebral disc degeneration. Nucleus pulposus of intervertebral discs were obtained from 22 patients and analysed for collagen and proteoglycan contents, and pro-MMP-2, TIMP-2 levels. Collagen content was determined as hydroxyproline and proteoglycan content was measured as glycosaminoglycans. The loss in matrix components did not correlate with the duration of the degenerative disc disease. Pro-MMP-2 levels were higher at early stages of the degenerative disc disease (r = -0.495, P < 0.05). TIMP-2 levels were similar in all samples. Pro-MMP-2 and TIMP-2 levels negatively correlated in herniated discs samples (r = -0.855, P < 0.01). Pro- MMP-2 levels negatively correlated with the collagen content in herniated disc material. Our findings may suggest a silent period of active disease prior to symptomatic outcome during which irreversible matrix loss occurs. Involvement of other proteolytic enzymes at different stages of the disease should also be investigated to help to control the degradation cascade at relatively early stages of disc degeneration before the clinical onset of disease.  相似文献   

8.
Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.  相似文献   

9.
Tumors of the oral cavity include combinations of hard and soft tissues that may be difficult to identify using routine hematoxylin and eosin (H & E) staining. Although combination stains can demonstrate hard and soft tissues, trichrome stains, such as VanGieson and Masson, cannot differentiate dental hard tissues, such as dentin, cementum and osteoid. Modified Gallegos (MGS) and verdeluz orange G-acid fuchsin (VOF) stains can differentiate components of teeth. We used 10 tissue sections of decalcified bone and 10 pathologic tissue sections that contained different calcified tissues including peripheral ossifying fibroma, odontoma, central ossifying fibroma and cemento-ossifying fibroma. Sections were stained with H & E, VOF or MGS. H and E stained both hard tissues pink. VOF stained bone purple-red, cementum red and collagen blue. MGS stained bone green-blue, cementum red and collagen blue. VOF staining intensity and differentiation was better than MGS staining. VOF staining demonstrated hard tissue components distinctly and exhibited good contrast with the surrounding connective tissue. VOF also is a simple, single step, rapid staining procedure.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号