首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
溪流鱼类多样性沿着河流纵向梯度的空间分布规律已得到大量报道, 但这些研究大多聚焦基于物种组成的分类α多样性, 而有关分类β多样性和功能多样性的纵向梯度分布规律及其对人类干扰的响应研究较少。本文以青弋江上游3条人为干扰程度不同的河源溪流为研究区域, 比较研究了人为干扰对溪流鱼类功能α和β多样性及其纵向梯度分布格局的影响。结果显示, 人类干扰改变了河源溪流鱼类功能多样性的纵向梯度格局——由线性变化变为二项式分布。此外, 我们发现, 人为干扰导致土著种被本地入侵种取代, 且较强的土地利用和水污染排放可能增大环境的不连续性, 而群落周转和嵌套变化往往取决于环境的变化。尽管功能β多样性由嵌套成分主导, 但周转成分占比相对于人为干扰较小的溪流而言明显增加。人为干扰显著改变了受干扰溪流鱼类的物种组成和功能多样性, 且功能多样性的纵向梯度格局在不同的多样性指标上存在差异。本研究强调, 在评估人为干扰下多样性的变化时, 需要从多方面考虑, 包括空间尺度和多样性指标等。  相似文献   

2.
秋浦河源国家湿地公园溪流鱼类群落的时空格局   总被引:6,自引:0,他引:6  
确定溪流鱼类群落的时空格局及其形成机制是开展鱼类物种多样性保护和管理的科学基础。该文于2012年5月和10月两次对秋浦河源国家湿地公园境内的24个可涉水河段取样,共采集鱼类29种,隶属10科4目。研究了溪流鱼类群落结构及其多样性的时空格局,并解析了局域栖息地条件与支流空间位置变量对鱼类群落的影响。鱼类多样性的时空变化显著,鱼类多样性总体上为二级溪流高于一级溪流,10月份高于5月份。流量量级、底质粗糙度及异质性、水温和水深等对鱼类多样性及群落结构的空间变化影响显著。鱼类群落结构符合嵌套格局,季节动态不显著,上游鱼类群落呈现为下游群落的嵌套子集。一、二级溪流间的群落结构尽管存在部分重叠但差异显著,且这种差异主要源于稀有花鳅(Cobitis rarus)、吻虾虎鱼(Ctenogobius spp.)、宽鳍鱲(Zacco platypus)、尖头鱥(Phoxinus oxycephalus)、高体鰟鲏(Rhodeus ocellatus)和原缨口鳅(Vanmanenia stenosoma)等鱼类相对多度的空间变化,其中,除尖头鱥的多度在一级溪流中更高外,其他5种鱼类均在在二级溪流更高。  相似文献   

3.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(4):686-694
确定鱼类的栖息地利用格局是研究物种与环境关系的基础, 也是鱼类多样性保护和管理的必要前提。目前, 有关溪流鱼类群落的栖息地斑块利用格局尚存在争议。基于2012年9月至2013年8月对青弋江河源溪流的逐月调查数据, 初步研究了鱼类群落的栖息地斑块利用格局, 着重在栖息地斑块尺度上解析了鱼类群落的时空变化规律。主要研究结果显示, 深潭和急滩2类斑块间的底质、流速、水深、溶氧栖息地因子显著差异, 且深潭斑块的环境稳定性高于急滩。研究共采集鱼类15种, 其中鲤科鱼类8种, 占采集物种数50%以上。基于鱼类物种存在与否的不连续变量的分析结果显示, 鱼类物种组成的斑块间和月份间变化均不具显著性。但是, 基于鱼类物种多度的连续变量的分析结果显示, 鱼类群落结构存在有显著的斑块间变化和时间动态; 就斑块间变化而言, 原缨口鳅(Vanmanenia stenosoma)在急滩斑块中的多度更高, 而宽鳍 (Zacco platypus)、光唇鱼(Acrossocheilus fasciatus)和尖头 (Phoxinus oxycephalus)等其他关键物种则在深潭中具有更高多度。深潭斑块的鱼类物种数显著高于急滩, 但2类斑块间的个体数无显著差异。深潭斑块的鱼类物种数较稳定, 而个体数月变化显著, 可能与鱼类繁殖和群体补充以及越冬死亡等有关; 急滩鱼类物种数和个体数的月变化均显著, 除了与鱼类群体补充和越冬死亡有关以外, 还可能受越冬时栖息地斑块选择变化的影响。上述结果表明, 在栖息地斑块空间尺度上, 由于研究区域内大多数物种在栖息地斑块选择上无明显的特化性, 深潭和急滩斑块间鱼类的物种组成分布不符合前人所报道的生境-共位群格局, 但区域内常见种多度的变化可引起鱼类群落结构的斑块间差异和季节动态。    相似文献   

4.
芦芽山寒温性针叶林冠层下植被beta多样性格局及其成因   总被引:1,自引:0,他引:1  
群落构建机制是生态学的中心议题之一。对山地植被beta多样性格局及其成因的探究有助于加深对此问题的认识。以芦芽山寒温性针叶林群落冠层下植被为研究对象,结合野外调查与室内实验获取的详细数据,运用Mantel检验、普通最小二乘回归和典范对应分析(CCA)等统计方法,探讨了林下植被的beta多样性格局及其成因,结果显示:(1)沿海拔梯度相邻群落间草本层物种周转率呈现递减格局,而灌木层变化规律不明显;(2)灌、草层beta多样性与海拔差异、地理距离呈显著正相关关系,而与局地环境异质性关系不显著。控制海拔作用后发现,灌、草层beta多样性与地理距离关系依然显著,而当消除地理距离的线性影响后,beta多样性与海拔关系也变得不显著(3)CCA模型中,环境因子共解释了物种组成变异的74.4%,其中,海拔、坡度、凋落物厚度、乔木密度与总干面积对林下灌、草植被物种组成具有显著影响,但土壤因子的作用未见显著。综上,生境筛滤与扩散限制共同主导了芦芽山寒温性针叶林冠层下群落构建过程,但扩散限制的影响强于生境筛滤作用。  相似文献   

5.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   

6.
物种丰富度海拔梯度格局及其形成机制一直是宏观生态学研究的重要议题。物种丰富度沿海拔梯度呈4种分布格局,其中单峰分布格局最为普遍。人们提出各种假设从不同角度解释物种丰富度的海拔梯度格局,这些假设主要以气候、空间效应、物种间相互作用及其进化历史为出发点,提出的假设主要有水分-能量动态假设、生物多样性代谢理论、生产力假设、种-面积关系、中域效应、栖息地异质性假设及静态进化模型。本文系统介绍了物种丰富度的海拔格局及影响其格局的生态过程。目前,物种丰富度的海拔格局主要集中在现代气候对物种丰富度海拔格局的形成过程的作用,但这些现代气候的参数之间具有显著共线性,难以分辨具体的某种环境因子对其的绝对贡献。结合现代气候和物种的谱系进化过程,系统比较不同海拔区域物种的系统发育特征有助于进一步理解物种丰富度的海拔分布格局及其成因机制,同时有助于理解现代环境的波动对植被群落的影响。  相似文献   

7.
物种通过功能性状响应环境变化, 探究群落功能性状多样性的海拔格局是揭示生物多样性空间分布格局和形成机制的重要研究内容。气候变化和土地利用是影响溪流生物多样性变化及其群落构建的重要因素, 然而气候和土地利用沿海拔梯度如何影响水生昆虫功能性状垂直分布格局的系统研究仍旧比较缺乏。本文基于2016年和2018年在云南澜沧江中游1,000-3,000 m海拔共56个溪流样点的水生昆虫群落调查数据, 利用线性和二次回归模型探索并比较了生活史性状(化性、生活史快慢、成虫寿命)和生态学性状(营养习性、生活习性、温度偏好)的群落加权平均性状多样性指数沿海拔梯度的分布特征, 并通过随机森林模型解析流域尺度气候和土地利用变量对生活史和生态学性状多样性垂直分布格局的影响。结果表明: 生活史性状中, 少于1世代、无季节性、慢季节性、成虫寿命长等性状多样性沿海拔梯度呈显著的“U”型分布格局, 而快季节性和成虫寿命极短多样性呈显著的单峰型海拔格局, 成虫寿命短多样性呈显著递增的海拔格局。生态学性状中, 温度偏好多样性与海拔梯度无关, 附着者和爬行者的多样性沿海拔梯度分别呈显著的递增和“U”型格局, 滤食者、植食者和捕食者的多样性分别呈显著递增、递减和“U”型海拔格局。随机森林模型分析结果表明, 气候和土地利用对生活史性状多样性的解释量高于对生态学性状多样性的解释量, 年平均温度和农业面积百分比是共同的关键因素。综上, 水生昆虫群落功能性状多样性海拔格局存在差异, 主要受不同自然环境梯度和人类干扰因素驱动。研究结果可为制定澜沧江流域生物多样性保护对策提供理论基础。  相似文献   

8.
陈兵  孟雪晨  张东  储玲  严云志 《生态学报》2019,39(15):5730-5745
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。  相似文献   

9.
秦岭太白山木本植物物种多样性的梯度格局及环境解释   总被引:37,自引:3,他引:34  
物种多样性沿环境梯度的分布格局是生物多样性研究的重要议题,而海拔梯度包含了各种环境因子的综合影响,因此对于探讨物种多样性沿环境梯度的分布格局具有重要意义。秦岭山脉地处我国暖温带向亚热带的过渡带,其植被垂直带和物种多样性分布格局对于研究我国南北部植被分异特征具有重要意义。基于对秦岭山脉太白山南北坡海拔1200—3750m之间的垂直样带调查的83个样方,本文利用植被数量分析方法(DCA和TWINSPAN)和Shannon-Wiener多样性指数、Pielou指数以及Jaccard相异性系数对太白山木本植物物种多样性在南北坡沿海拔梯度分布格局进行了初步研究。结果表明:太白山的木本植物群落具有明显的环境梯度格局,海拔是决定太白山植物群落分布的主要因素,而坡向起到次要作用一植物群落类型与坡向的关系不大,当考虑群落的环境梯度格局时,DCA第一轴主要与年均温密切相关,而第二轴则取决于年平均相对湿度:乔木层和灌木层的物种具有相似的海拔梯度格局,植物群落中木本植物物种丰富度和多样性随着海拔的升高单调下降;群落均匀度随着海拔变化的规律不明显;灌木层的物种多样性比乔木层更为丰富,而南坡具有比北坡更多的物种数和更高的多样性。相邻海拔之问群落的相异性在南北坡具有不同的分布格局,在北坡2800m以下,群落相异性沿海拔梯度变化不大,而在2800m以上的高海拔地区,群落相异性随海拔的升高而降低;在南坡,随着海拔的升高,群落相异性不断减少。太白山南坡群落比北坡分布更连续。  相似文献   

10.
青藏高原草地群落组成和结构的海拔梯度格局 青藏高原高寒草地是维持区域生态安全的天然屏障,也在一定程度上造就了该区域较高的生物多样性。然而,我们对青藏高原高寒草地植物群落组成和结构的海拔分布格局及其自身维持机制仍知之甚少。本研究在青藏高原东北部沿公路形成的海拔梯度设置了39个实验样地(海拔跨度为2800–5100m),每个样地设5个调查样方进行群落调查,包括物种组成、高度、盖度,评估青藏高原高寒草地植物群落的α和β多样性的海拔梯度格局及其影响因素。研究结果发现草地群落高度随着海拔的增加而显著降低,而群落盖度变化却不显著。随着海拔的增加,植物物种丰富度(α多样性)显著增加,而群落变异性(β多样性)显著降低。约束聚类分析表明,随海拔增加草地群落结构逐渐发生变化,基于此,在这种变化过程中,我们监测到3个渐变的海拔间断点,分别在海拔3640、4252和4333 m处。结构方程模型(SEM)表明,降水增加和温度降低对α多样性有显著的正向作用,但植物群落α多样性的变化显著改变群落变异性。以上结果表明,青藏高原的群落组成和结构沿海拔梯度发生了从量变到质变的过程。  相似文献   

11.
12.
Stream fish are expected to be significantly influenced by climate change, as they are ectothermic animals whose dispersal is limited within hydrographic networks. Nonetheless, they are also controlled by other physical factors that may prevent them moving to new thermally suitable sites. Using presence–absence records in 655 sites widespread throughout nine French river units, we predicted the potential future distribution of 30 common stream fish species facing temperature warming and change in precipitation regime. We also assessed the potential impacts on fish assemblages' structure and diversity. Only cold-water species, whose diversity is very low in French streams, were predicted to experience a strong reduction in the number of suitable sites. In contrast, most cool-water and warm-water fish species were projected to colonize many newly suitable sites. Considering that cold headwater streams are the most numerous on the Earth's surface, our results suggested that headwater species would undergo a deleterious effect of climate change, whereas downstream species would expand their range by migrating to sites located in intermediate streams or upstream. As a result, local species richness was forecasted to increase greatly and high turnover rates indicated future fundamental changes in assemblages' structure. Changes in assemblage composition were also positively related to the intensity of warming. Overall, these results (1) stressed the importance of accounting for both climatic and topographic factors when assessing the future distribution of riverine fish species and (2) may be viewed as a first estimation of climate change impacts on European freshwater fish assemblages.  相似文献   

13.
1. The effects of seasonal inundation on the biology of fishes on floodplains of large Amazonian rivers are well studied. However, the small seasonal changes in headwater streams are generally considered to have little effect on fish assemblages. 2. In this study, we analysed seasonal changes in the species composition and abundance of fish in small Amazonian forest streams. We sampled fish with hand and seine nets in headwater streams in a 10 000 ha terra‐firme forest reserve near Manaus, Brazil. Each stream was surveyed at the end of the 2005 dry season, at the beginning of the 2006 rainy season and at the beginning of the 2006 dry season, by means of a standardized sampling effort. 3. The numbers of individuals and species caught were higher in the dry season, but rarefaction analyses indicated that greater species numbers could have been due simply to the larger number of individuals caught. 4. Between the dry and rainy season, the direction of changes in species composition in multivariate space varied among sites, especially for quantitative (abundance) data. However, the observed variation among sites was the less than expected if the directions of change were random. 5. Fish assemblages in the second dry season were more similar to those in the previous dry season than expected if changes in species composition among seasons were random. This indicates that a general seasonal pattern in fish assemblages can be detected, despite the existence of some erratic site‐specific changes. 6. Most of the species that showed large seasonal variations in density occupy temporary ponds during the rainy season, when much of the valley is inundated and pond networks form adjacent to streams. Short‐duration lateral migrations to these ponds may play an important role in the seasonal fish‐assemblage dynamics in Amazonian headwater streams. 7. Our results contrast with previous studies on small Amazonian streams, which have found little seasonal change in fish assemblages, and highlight the importance of the abundance of common species as an indicator of general fish assemblage structure in biological monitoring programmes.  相似文献   

14.
The influences of low-head dams on the fish assemblages were examined in this study, using fish data collected in six treatment and five reference sites at three low-head dams in the headwater streams of the Qingyi watershed, China. Comparing with those in the reference sites, local habitat variables were significantly altered by low-head dams in the treatment sites, involving wider channel (only in the impoundment area), deeper water and slower flow. Fish species richness varied significantly across seasons, not across site categories, suggesting that these low-head dams did not alter species richness. However, significant decreases in fish abundance and density were observed in the impoundment areas immediately upstream of dams, but not in the plunge areas downstream. Fish assemblage structures kept relative stability across seasons, and their significant difference between-site was only observed between the impoundment areas and the sites far from dams upstream. This variation in assemblage structures was due to the differing relative abundance of some co-occurring species; more lentic but less lotic fish was observed in the impoundment areas. The spatial and temporal patterns of fish assemblages were correlated with local habitat in this study area. Wetted width had negative correlation with fish species richness, abundance and density, respectively. Water temperature also positively affected species richness. In addition, wetted width, water depth, current velocity and substrate were the important habitat variables influencing assemblage structures. Our results suggested that, by modifying local habitat characteristics, low-head dams altered fish abundance and density in the impoundment areas immediately upstream of dam, not in the plunge areas immediately downstream, and thereby influenced fish assemblage structures in these stream segments.  相似文献   

15.
Spatial and temporal variation of fish assemblages were investigated seasonally from May 2007 to February 2008 across 11 study sites in a subtropical small stream, the Puxi Stream, of the Huangshan Mountain. Along the longitudinal gradient from headwater to downstream, fish species richness and abundance increased gradually, but then decreased significantly at the lower reaches. The highest species richness and abundance were observed in August and the lowest in February. Based on analysis of similarities (...  相似文献   

16.
Distinct fish assemblages were found at the mesohabitat scale in 14 streams in eastern Sabah, Malaysia. Sites were designated a priori as pool, run or riffle on the basis of physical habitat structure and properties. Principal components analysis of physical habitat data confirmed the validity of the a priori designation with a major axis of three correlated variables: water velocity, depth and substratum type. Canonical discriminant analysis on fish abundance and biomass data confirmed the existence of a specialized assemblage of fishes from riffle areas of all streams. Overall, pool and run assemblages were highly variable, dependent on stream size, but also variable between streams of the same size. Multiple regression of species richness, diversity, abundance and biomass data on principal components revealed significant but low correlations with measured habitat variables. Riffle habitats showed lower species richness and diversity but high abundance. The fish assemblage in riffles was dominated by balitorid species, specialized for fast-water conditions. Pool assemblages had the highest species diversity and were dominated by cyprinid species of a number of morphological and ecological guilds. Run assemblages were intermediate in assemblage characteristics between riffle and pool assemblages. Between-stream variation in assemblage composition was less than within-stream variation. Of 38 species collected, seven could be designated as riffle specialists, 18 as pool specialists and 13 as ubiquitous, although most of the latter showed size-specific habitat use with larger size classes found in slower, deeper water.  相似文献   

17.
The spatial and temporal variations of the fish assemblages in mountain streams of China are poorly understood. The relationships between the fish assemblage and selected habitat features were examined in the North Tiaoxi River, one of headwaters of Taihu Lake. A total of 3,348 individuals belonging to 5 orders, 11 families, 25 genera and 34 species were collected including 33 native species and one invasive species. Among those, about 20 species were endemic to China. Non-metric Multidimensional Scaling (NMDS) was applied to compare fish assemblage structures from upstream to downstream during four seasons. Species assemblages differed along the stream continuum, but there was little apparent change associated with the seasons. Species richness and Shannon-Weaver index (H′) tended to increase along the stream continuum from the upstream to downstream and the proportion of invertivorous fish tended to significantly decrease along the continuum with a parallel significant increase in the percentage of omnivores. Fish assemblages were significantly related to both water quality and habitat structure variables. Canonical Correspondence Analysis ordinations (CCA) revealed that 6 of the 14 selected environmental variables had significant relationships with the fish assemblage such as distance to source, stream width, altitude, pH, water depth, and water velocity and different sampling sites were associated with different environmental variables in different seasons. The main differences in fish assemblage structure and diversity within the whole watercourse are probably related to large-scale factors such distance to source, altitude and stream width. Differences of instream characteristics are likely to be caused by natural variability of the ecosystems but also, in some case, by anthropogenic influence like human settlements, agriculture and river embankment and pollution from small factory.  相似文献   

18.
The impact of Typhoon-Rusa-generated flood on fish assemblages was investigated in small streams in the northeastern part of South Korea. As a result of high precipitation (870 mm day−1) during the typhoon, stream morphology and substrate composition changed. Stream depth and width decreased and slightly enlarged, respectively. Substantial amounts of mud and silt flowed into the streams and modified substrate composition to a simple state. Although the total number of individual fish significantly decreased after the flood, the dominant species remained the same relative to before the typhoon, and their relative abundance subsequently increased. However, the rank order of fish assemblages before and after the flood changed. Three years after the flood, fish assemblage recovered, but the number of individuals per site was still lower than prior to the flood. Flooding affects fish assemblages both directly and indirectly. Indirect impacts, such as habitat alteration, more critically affected the change in local fish assemblage and delayed recovery time. Nonetheless, fish assemblages persisted at sites where floods occurred.  相似文献   

19.
Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β‐diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large‐scale studies and has important implications for the aquatic conservation of the region.  相似文献   

20.
Fish assemblage structure, rarefied species richness, species diversity and evenness of assemblages upstream of a reservoir in Oklahoma, U.S.A., were compared pre and post‐impoundment as well as in contemporary collections from streams above and below the reservoir. There were significant shifts in assemblage structure between historical and contemporary collections above the reservoir but not between contemporary assemblages above and below the impoundment. Indicator species analysis revealed that the sand shiner Notropis stramineus and fathead minnow Pimephales promelas have declined, whereas largemouth bass Micropterus salmoides and western mosquitofish Gambusia affinis have increased in relative abundance in assemblages upstream of the impoundment. Species richness was lower in contemporary assemblages compared with historical assemblages. Furthermore, contemporary assemblages below the dam had lower species richness, diversity and evenness compared with contemporary collections above the dam. These results highlight the spatial and temporal extent of reservoirs altering fish assemblages upstream of impoundments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号