首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

We ask how productivity responses of alpine plant communities to increased nutrient availability can be predicted from abiotic regime and initial functional type composition.

Methods

We compared four Caucasian alpine plant communities (lichen heath, Festuca varia grassland, Geranium-Hedysarum meadow, snow bed community) forming a toposequence and contrasting in productivity and dominance structure for biomass responses to experimental fertilization (N, P, NP, Ca) and irrigation for 4–5?years.

Results

The dominant plants in more productive communities monopolized added N and P, at the expense of their neighbors. In three out of four communities, N and P fertilizations gave greater aboveground biomass increase than N or P fertilization alone, indicating overall co-limitation of N and P, with N being most limiting. Relative biomass increase in NP treatment was negatively related to biomass in control plots across the four communities. Grasses often responded more vigorously to P, but sedges to N alone. Finally, we present one of the rare examples of a forb showing a strong N or NP response.

Conclusion

Our findings will help improve our ability to predict community composition and biomass dynamics in cool ecosystems subject to changing nutrient availability as induced by climate or land-use changes.  相似文献   

2.

Background

Nitrogen-fixing legumes are key species in grassland ecosystems, as their ability to fix atmospheric nitrogen can facilitate neighboring plants. However, little is known about the fate of this legume effect in the face of extreme weather events, which are increasingly expected to occur.

Methods

Here, we examined experimentally how the presence of a legume modifies above-ground net primary production (ANPP) and nitrogen supply of neighboring non-legumes under annually recurrent pulsed drought and heavy rainfall events by comparing responses of three key species in European grassland versus without legume presence over 4 years.

Results

Legume presence facilitated community productivity of neighboring non-legumes under ambient weather conditions and also under experimental heavy rainfall. However, no facilitation of community productivity by the legume was found under experimental drought. Productivity of the three target species responded species-specifically to legume presence under different weather conditions: Holcus lanatus was facilitated only under control conditions, Plantago lanceolata was facilitated only under heavy rainfall, and Arrhenatherum elatius was facilitated irrespective of climate manipulations. The legume effects on δ 15N, leaf N concentration, and N uptake were also species-specific, yet irrespective of the climate manipulations. The data suggest that the missing legume effect on community productivity under the pulsed drought was rather caused by reduced N-uptake of the target species than by reduced N-fixation by the legume.

Conclusions

In contrast to heavy rain, the presence of a legume could not effectively buffer community ANPP against the negative effects of extreme drought events in an experimental temperate grassland. Facilitation also depends on the key species that are dominating a grassland community.  相似文献   

3.

Aims

Forest thinning is expected to affect tree water use and carbon assimilation, but the related influence from climate variability is little known. Recent forest thinning in the Wungong catchment coincided with a record dry year following the thinning, which provides a rare opportunity to understand the climate influence on the thinning effect.

Methods

A field experiment was conducted to examine changes before and after thinning, especially the rainfall, soil moisture, leaf water status, tissue isotope signature (13?C and 15?N) and N concentration of overstorey and understorey juvenile trees of Eucalyptus marginata (Donn ex Sm.).

Results

Despite the post-thinning drought, surface soil was moister and juvenile jarrah plants were less water stressed, attributable to reduced rain interception and transpiration as a result of less canopy cover. The overstorey was under stress but mainly due to drought rather than by thinning. The concentration of N declined in both tree stems and juvenile leaves along with available N in soil, suggesting a soil N limitation. No treatment effects were detected from leaf relative water content and tissue isotope signature (13?C and 15?N).

Conclusions

The drought effects were superimposed over the thinning effects on overstorey growth, with stemwood δ13C being a major indicator of water stress. The water relations and carbon assimilation of understorey juveniles were however dependent more on topsoil moisture, and the wetter soil during the year following thinning enhanced growth activity and hence the depletion of 13?C (more negative δ13C) in juvenile leaves.  相似文献   

4.

Background and Aims

Global change will likely express itself in southwestern United States arid lands through changes in amounts and timing of precipitation in response to elevated CO2 concentrations. In addition, increased nitrogen (N) deposition may occur due to increased urban development. This study addressed the effects of water and N availability on C allocation in arid land soil-plant systems.

Methods

Columns filled with Mojave Desert topsoil containing Larrea tridentata seedlings with two treatment levels each of N and soil moisture were labeled by exposure to 13C-enriched CO2.

Results

Increased soil moisture increased plant biomass, total 13C uptake, 13C levels in leaves, soil organic matter, and soil respiration, decreased relative C allocation to stems but increased allocation to soil organic matter. Increased soil N availability increased N uptake but decreased C allocation to soil respiration presumably due to decreased substrate supply for microbes. There was no detectable label in carbonate C, suggesting that this pool does not significantly contribute to ecosystem C fluxes.

Conclusions

Our study indicates that increased water availability causes increased C uptake with increased C allocation to soil organic matter in Larrea tridentata-dominated communities while increased N deposition will have a minimal impact on C sequestration.  相似文献   

5.

Aims

To assess the effects of atmospheric N deposition on the C budget of an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, it is necessary to explore the responses of soil-atmosphere carbon dioxide (CO2) exchange to N addition.

Methods

Based on a multi-form, low-level N addition experiment, soil CO2 effluxes were monitored weekly using the static chamber and gas chromatograph technique. Soil variables and aboveground biomass were measured monthly to examine the key driving factors of soil CO2 efflux.

Results

The results showed that low-level N input tended to decrease soil moisture, whereas medium-level N input maintained soil moisture. Three-year N additions slightly increased soil inorganic N pools, especially the soil NH 4 + -N pool. N applications significantly increased aboveground biomass and soil CO2 efflux; moreover, this effect was more significant from NH 4 + -N than from NO 3 ? -N fertilizer. In addition, the soil CO2 efflux was mainly driven by soil temperature, followed by aboveground biomass and NH 4 + -N pool.

Conclusions

These results suggest that chronic atmospheric N deposition will stimulate soil CO2 efflux in the alpine meadow on the Qinghai–Tibetan Plateau by increasing available N content and promoting plant growth.  相似文献   

6.

Background and aims

We determined the relationship between site N supply and decomposition rates with respect to controls exerted by environment, litter chemistry, and fungal colonization.

Methods

Two reciprocal transplant decomposition experiments were established, one in each of two long-term experiments in oak woodlands in Minnesota, USA: a fire frequency/vegetation gradient, along which soil N availability varies markedly, and a long-term N fertilization experiment. Both experiments used native Quercus ellipsoidalis E.J. Hill and Andropogon gerardii Vitman leaf litter and either root litter or wooden dowels.

Results

Leaf litter decay rates generally increased with soil N availability in both experiments while belowground litter decayed more slowly with increasing soil N. Litter chemistry differed among litter types, and these differences had significant effects on belowground (but not aboveground) decay rates and on aboveground litter N dynamics during decomposition. Fungal colonization of detritus was positively correlated with soil fertility and decay rates.

Conclusions

Higher soil fertility associated with low fire frequency was associated with greater leaf litter production, higher rates of fungal colonization of detritus, more rapid leaf litter decomposition rates, and greater N release in the root litter, all of which likely enhance soil fertility. During decomposition, both greater mass loss and litter N release provide mechanisms through which the plant and decomposer communities provide positive feedbacks to soil fertility as ultimately driven by decreasing fire frequency in N-limited soils and vice versa.  相似文献   

7.

Aims

Nitrogen deposition affect fine-root dynamics, a key factor in forest carbon and nutrient dynamics. This study aimed to elucidate the effects of increased soil inorganic nitrogen (N) levels on the fine-root dynamics of Cryptomeria japonica, which is tolerant to excess N load.

Methods

An ammonium nitrate solution (28 kg ha?1 month?1) was applied for 3 years to plots (1 m?×?2 m) in a C. japonica plantation. The elongation and disappearance of the fine roots were examined using the minirhizotron technique.

Results

The N fertilization increased soil inorganic N content and lowered the soil pH. Fine-root elongation rates increased with fertilization, whereas patterns of their seasonal changes were not affected. The ratio of cumulative disappearance to cumulative elongation of fine roots was lower in the N-fertilized plots than in the control plots. The mean diameter of the fine roots was not affected by N fertilization.

Conclusions

Our results suggest that C. japonica can respond to increased levels of soil inorganic N by increasing both the production and residence time of the fine roots. However, the effects of the changing soil N content are less evident for the phenology and morphology of the fine roots in C. japonica.  相似文献   

8.
Berbeco  Minda R.  Melillo  Jerry M.  Orians  Colin M. 《Plant and Soil》2012,352(1-2):405-417

Aims

There is evidence that increased N inputs to boreal forests, via atmospheric deposition or intentional fertilization, may impact negatively on ectomycorrhizal (ECM) fungi leading to a reduced flux of plant-derived carbon (C) back to the atmosphere via ECM. Our aim was to investigate the impact of N fertilization of a Pinus sylvestris (L.) forest stand on the return of recently photoassimilated C via the ECM component of soil respiration.

Methods

We used an in situ, large-scale, 13C-CO2 isotopic pulse labelling approach and monitored the 13C label return using soil gas efflux chambers placed over three different types of soil collar to distinguish between heterotrophic (RH), autotrophic (RA; partitioned further into contributions from ECM hyphae and total RA) and total (RS) soil respiration.

Results

The impact of N fertilization was to significantly reduce RA, particularly respiration via extramatrical ECM hyphae. ECM hyphal flux in control plots showed substantial spatial variability, resulting in mean flux estimates exceeding estimates of total RA, while ECM contributions to RA in N treated plots were estimated at around 30%.

Conclusion

Significant impacts on soil C cycling may be caused by reduced plant C allocation to ECM fungi in response to increased N inputs to boreal forests; ecosystem models so far lack this detail.  相似文献   

9.

Background and aims

Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources.

Methods

We constructed N budgets by measuring N concentration ([N]) and N content (N C ) of above- and belowground perennial and ephemeral tissues, determined N uptake (N UP ), and calculated N use efficiency (NUE).

Results

Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N C and N UP increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N UP . Inclusion of above- and belowground ephemeral tissue turnover in N UP calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200?kg?N ha?1?year?1 while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent.

Conclusions

Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.  相似文献   

10.

Background and aims

Plant traits may characterize functional ecosystem properties and help to predict community responses to environmental change. Since most traits used relate to aboveground plant organs we aim to explore the indicative value of root traits.

Methods

We examined the response of root traits (specific root length [SRL], specific root surface area [SRA], root diameter [RD], root tissue mass density [TMD], root N concentration) in six grassland species (3 grasses, 3 herbs) to four management regimes (low vs. high mowing frequency; no fertilization vs. high NPK fertilization). The replicated experiment in temperate grassland with long continuity simulated the increase in grassland management intensity in the past 50 years in Central Europe.

Results

Increasing mowing frequency (one vs. three cuts per year) led to no significant root trait changes. NPK fertilization resulted in considerable trait shifts with all species responding in the same direction (higher SRL, SRA and N concentration, lower TMD) but at different magnitude. Fertilization-driven increases in SRA were mainly caused by lowered tissue density while root diameter reduction was the main driver of SRL increases.

Conclusion

We conclude that root morphological traits may be used as valuable indicators of environmental change and increasing fertilization in grasslands.  相似文献   

11.

Background and aims

Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.

Methods

We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.

Results

Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal colonization was unchanged. The uptake of N and P was not increased proportionally with root growth after 5 years of treatment.

Conclusions

While aboveground biomass was unchanged, the root growth was increased under elevated CO2. The results suggest that plant production may be limited by N (but not P) when exposed to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change.  相似文献   

12.

Aims

We determined whether nitrogen (N) deposition on phosphorus (P)-limited soil could increase Schima superba growth or alter root formation or P efficiency. The effects of N deposition on S. superba were also used to investigate the N/P requirements of plants of different provenances.

Methods

One-year-old S. superba seedlings from eight geographic areas were grown in P-limited soil and treated with N (0, 50, 100, and 200 -kg?N?ha?1?year?1; i.e., control, N50, N100, or N200, respectively). Seedling growth, root development, phosphorus acquisition efficiency (PAE), and phosphorus utilization efficiency (PUE) were measured.

Results

S. superba responded positively to N supplementation. Seedling growth and dry biomass were highest with N100 treatment and lowest with N200. Root biomass and acquisition of soil P were greatest with N100. Significant differences were observed among plants of different geographical provenances. PAE and PUE had a strong relationship with root growth in plants subjected to N100 treatment.

Conclusion

A threshold for N and P requirements related to different genetic conditions and soil nutrients may exist for S. superba. Root growth and PAE can be divided into three categories based on soil nitrate levels. Nutrients were found to control root morphology and to enhance aboveground differences.  相似文献   

13.

Background and aims

Future climate scenarios for the Mediterranean imply increasing precipitation variability. This study presents a large-scale water manipulation experiment simulating changes in precipitation variability, aiming at a better understanding of the effects of rainfall patterns on soil C and N cycling and understorey productivity in a Mediterranean oak woodland.

Methods

We used rain-out shelters to achieve (1) a normal dry period (7 days), and (2) a dry period increased three-fold (21 days), without altering total annual precipitation inputs.

Results

The temporal patterns of soil respiration (R s) and soil inorganic N were not affected by treatment. However, water infiltration and N leaching increased with large infrequent watering events. R s and soil NH4 +-N correlated with soil temperature, with soil NO3 ?-N being influenced by leaching.

Conclusions

The lack of significant treatment effects on either R s or soil inorganic N can be explained by (1) minor differences in plant productivity between the treatments, suggesting equal plant N demand, and (2) the absence of moisture dependence of R s and soil NH4 +-N. Increased N leaching with large infrequent precipitation events may have longer-term consequences for ecosystem functioning. Our results contribute to an improved understanding of possible climate change effects on key ecosystem processes in Mediterranean ecosystems.  相似文献   

14.

Background and Aims

Increased N availability induced by agricultural fertilization applications and atmospheric N deposition may affect plant nutrient resorption in temperate wetlands. However, the relationship between nutrient resorption and N availability is still unclear, and most studies have focused on leaf nutrient resorption only. The aim of our study was to examine the response of leaf and non-leaf organ nutrient resorption to N enrichment in a temperate freshwater wetland.

Methods

We conducted a 7-year N addition experiment to investigate the effects of increased N loading on leaf, sheath and stem nutrient (N and P) resorption of two dominant species (Deyeuxia angustifolia and Glyceria spiculosa) in a freshwater marsh in the Sanjiang Plain, Northeast China.

Results

Our results showed that, for both leaf and non-leaf organs (sheath and stem), N addition decreased N resorption proficiency and hence increased litter N concentration. Moreover, the magnitude of N addition effect on N resorption proficiency varied with fertilization rates for D. angustifolia sheaths and stems, and G. spiculosa leaves. However, increased N loading produced inconsistent impacts on N and P resorption efficiencies and P resorption proficiency, and the effects only varied with species and plant organs. In addition, N enrichment increased litter mass and altered litter allocation among leaf, sheath and stem.

Conclusions

Our results highlight that leaf and non-leaf organs respond differentially to N addition regarding N and P resorption efficiencies and P resorption proficiency, and also suggest that N enrichment in temperate freshwater wetlands would alter plant internal nutrient cycles and increase litter quality and quantity, and thus substantially influence ecosystem carbon and nutrient cycles.  相似文献   

15.

Background and aims

The association of the legume Anthyllis vulneraria and the grass Festuca arvernensis, was found to be very efficient for the phytostabilisation of highly multi-metal contaminated mine tailings. Our objective was to quantify the contribution of Anthyllis inoculated with its symbiotic bacteria Mesorhizobium metallidurans to the soil N pool and to test whether a starter nitrogen fertilization may improve symbiotic nitrogen fixation and the growth of Festuca.

Methods

Plants of Festuca and of Anthyllis inoculated with M. metallidurans were grown separately during eight months in pots filled with mine contaminated soil. Estimation of the N fluxes was realized using 15?N isotopic methods.

Results

Starter N fertilization (28 kg N ha?1) improved symbiotic N2 fixation and the growth of both species. Belowground N balance (N rhizodeposition – soil N uptake) of the non-fertilized Anthyllis at maturity was negative (?30.6 kg N ha?1). However, the amount of N derived from fixation, including above- and belowground parts, was 78.6 kg N ha?1, demonstrating the ability of this symbiotic association to improve soil N content after senescence.

Conclusions

i) soil N enrichment by the N2-fixing symbiotic association occurs after plant senescence, when decaying leaves and shoots are incorporated into the soil; ii) application of a starter fertilization is an efficient solution to improve phytostabilisation of highly contaminated sites.  相似文献   

16.

Background and aims

Management approach may influence forage production as well as soil organic carbon (SOC) and soil total nitrogen (STN) accrued beneath perennial grass-legume components of irrigated crop rotations. This study aimed to evaluate effects of conventional, certified organic, and reduced-tillage management approaches on above- and belowground biomass production and C and N content in alfalfa-grass mixture, and their relationships with SOC and STN.

Methods

An alfalfa-grass mixture was established in 2009 on four replications under a sprinkler irrigation system. Soil characteristics were analyzed at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC, STN, aboveground biomass C and N, and coarse- and fine-root C and N were quantified in samples collected during 2009–2011.

Results

Conventional management produced more aboveground biomass than reduced-tillage and organic, but production under organic matched conventional and exceeded reduced-tillage in the last two harvests of the study. Root production was constant under the three approaches, but resulted in more SOC accrued under reduced-tillage than under the other two approaches.

Conclusions

Biomass production was favored by conventional seedbed preparation and soil fertility management while SOC accrual was favored by minimum soil disturbance. In addition, aboveground biomass was influenced by seasonal air temperature, precipitation, and nutrient mineralization from the previous season, so above-/belowground allocation changed seasonally.  相似文献   

17.

Background and aims

The selection of legume species and species mixtures influences agroecosystem nitrogen (N) and carbon cycling. We utilized a fertility gradient to investigate the effects of plant species interactions on biological N fixation of an annual and perennial legume in response to shifting soil resource availability.

Methods

Legume N fixation of annual field pea (Pisum sativum) and perennial red clover (Trifolium pratense) grown in monoculture and mixtures with oats (Avena sativa) or orchardgrass (Dactylis glomerata) was estimated using the 15N natural abundance method across 15 farm fields and we measured six soil N pools ranging from labile to more recalcitrant.

Results

Evidence of complementary and facilitative species interactions was stronger for the perennial red clover-orchardgrass mixture than for the annual field pea-oat mixture (N Land Equivalency Ratios were 1.6 and 1.2, respectively). We estimated that the transfer of fixed N from red clover to orchardgrass increased aboveground N fixation estimates by 15% from 33 to 38?kg?N ha?1. Despite a more than 2-fold range in soil organic matter levels and more than 3-fold range in labile soil N pools across field sites, the N fertility gradient was not a strong predictor of N fixation. While grass N assimilation was positively correlated with soil N pools, we found only weak, inverse correlations between legume N fixation and soil N availability. In grass-legume mixtures, soil N availability indirectly influenced N fixation through plant competition.

Conclusions

These results suggest that increasing diversity of cropping systems, particularly through the incorporation of perennial mixtures into rotations, could improve overall agroecosystem N cycling efficiency.  相似文献   

18.

Background and aims

Few studies have investigated the effect of nitrogen (N) fertilizer on ecosystem respiration (Re) under mixed legume and grass pastures sown at different seeding ratios,and data are almost entirely lacking for alpine meadow of the Tibetan Plateau. Our aim was to test the hypothesis that although a combination of legumes with grass and N fertilizer increases Re the combination decreases Re intensity (i.e. Re per unit of aboveground biomass) due to greater increases in aboveground biomass compared to increases in Re.

Methods

This hypothesis was tested using different seeding ratios of common vetch (Vicia sativa L.) and oat (Avena sativa L.) with and without N fertilizer on the Tibetan plateau in 2009 and 2010. Re was measured using a static closed opaque chamber. Re intensity was estimated as the ratio of seasonal average Re during the growing season to aboveground biomass.

Results

Compared with common vetch monoculture pasture, mixed legume-grass pastures only significantly decreased Re intensity (with a decrease of about 75 %–87 %) in the drought year 2009 due to greater increases in aboveground biomass compared to increases in Re. There were no significant differences in Re and Re intensity among different seeding ratios of oat and common vetch in either year. N fertilizer significantly decreased Re intensity for common vetch monoculture pasture by 24.5 % in 2009 and 69.5 % in 2010 although it did not significantly affect plant production and Re.

Conclusions

From the perspective of forage yield and Re, planting mixed legume-grass pastures without N fertilizer is a preferable way to balance the twin objectives of forage production and mitigation of atmospheric greenhouse gas emissions in alpine regions.  相似文献   

19.

Background and aims

Emission of the greenhouse gas (GHG) nitrous oxide (N2O) are strongly affected by nitrogen (N) fertilizer application rates. However, the role of other nutrients through stoichiometric relations with N has hardly been studied. We tested whether phosphorus (P) availability affects N2O emission. We hypothesized that alleviation of plant P-limitation reduces N2O emission through lowering soil mineral N concentrations.

Methods

We tested our hypothesis in a pot experiment with maize (Zea mays L.) growing on a P-limiting soil/sand mixture. Treatment factors included P and N fertilization and inoculation with Arbuscular Mycorrhizal Fungi (AMF; which can increase P uptake).

Results

Both N and P fertilization, as well as their interaction significantly (P?<?0.01) affected N2O emission. Highest N2O emissions (2.38 kg N2O-N ha?1) were measured at highest N application rates without P fertilization or AMF. At the highest N application rate, N2O fluxes were lowest (0.71 kg N2O-N ha?1) with both P fertilization and AMF. The N2O emission factors decreased with 50 % when P fertilization was applied.

Conclusions

Our results illustrate the importance of the judicious use of all nutrients to minimize N2O emission, and thereby further underline the intimate link between sound agronomic practice and prudent soil GHG management.  相似文献   

20.

Aims

Nitrogen (N) fertilization is known to modify a plant’s susceptibility to necrotrophic diseases. However, the effect of N nutrition on defence is not well known. It was hypothesized that not only molecules related to the N metabolism but also main sugars could mediate the effect of plant fertilization on its susceptibility to pathogens.

Methods

Two necrotrophic fungi, Botrytis cinerea and Sclerotinia sclerotiorum were inoculated on leaves of lettuce plants grown at five nitrate (NO3 ?) fertilization levels, in three independent experiments. Variations in plant composition at the time of inoculation were linked to the size of lesions observed after 5–6 days.

Results

Both diseases were favoured by high NO3 ? fertilization. However, the highest disease levels were not found in the same experiment for B. cinerea and S. sclerotiorum. Among the components measured, NO3 ? and sucrose (SUC) were positively and negatively correlated to the two diseases in the three experiments, but the relationship between SUC and lesion size was more significant for S. sclerotiorum. Water content, N and total carbon (C) were also significantly correlated to the diseases, but the relationships were less straightforward. The ratios of SUC over total sugars and fructose (FRU) over total sugars fitted, very closely for S. sclerotiorum, a negative and positive exponential relationship respectively with lesion size. Absolute or relative glucose levels were not linked to the diseases.

Conclusions

Plant metabolic modifications induced by variations of N availability conferred the plant variable defence ability, which seemed, at least for S. sclerotiorum, mainly mediated by variations in host SUC and FRU levels. The generalization of these findings to other species would be of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号