首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   3篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   12篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   12篇
  2007年   13篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   10篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1967年   2篇
排序方式: 共有182条查询结果,搜索用时 16 毫秒
1.
2.
Glycinebetaine (betaine), an osmoregulant in halophilic plants, stabilized the evolution of oxygen and the synthesis of ATP by thylakoid membranes from the cyanobacterium Synechocystis PCC6803 when it was present during the preparation and incubation of the thylakoid membranes. Moreover, betaine enhanced the evolution of oxygen and the synthesis of ATP when present during assays. When betaine at 1.0 M was present during the preparation of thylakoid membranes and during the measurement of activity, the rate of evolution of oxygen was equivalent to that of intact cells.  相似文献   
3.
Abbreviations COM center of mass distance

MD molecular dynamics

MM-PBSA Molecular Mechanics Poisson–Boltzmann Surface Area

Nb nanobody

PlGF placenta growth factor

Rg radius of gyration

RMSD root mean-square deviation

SASA solvent-accessible surface area

VEGF vascular endothelial growth factor

  相似文献   
4.
In direct experiments, rate constants of photochemical (kP) and non-photochemical (kP+) fluorescence quenching were determined in membrane fragments of photosystem II (PSII), in oxygen-evolving PSII core particles, as well as in core particles deprived of the oxygen-evolving complex. For this purpose, a new approach to the pulse fluorometry method was implemented. In the “dark” reaction center (RC) state, antenna fluorescence decay kinetics were measured under lowintensity excitation (532 nm, pulse repetition rate 1 Hz), and the emission was registered by a streak camera. To create a “closed” [P680+QA] RC state, a high-intensity pre-excitation pulse (pump pulse, 532 nm) of the sample was used. The time advance of the pump pulse against the measuring pulse was 8 ns. In this experimental configuration, under the pump pulse, the [P680+QA] state was formed in RC, whereupon antenna fluorescence kinetics was measured using a weak testing picosecond pulsed excitation light applied to the sample 8 ns after the pump pulse. The data were fitted by a two-exponential approximation. Efficiency of antenna fluorescence quenching by the photoactive RC pigment in its oxidized (P680+) state was found to be ~1.5 times higher than that of the neutral (P680) RC state. To verify the data obtained with a streak camera, control measurements of PSII complex fluorescence decay kinetics by the single-photon counting technique were carried out. The results support the conclusions drawn from the measurements registered with the streak camera. In this case, the fitting of fluorescence kinetics was performed in three-exponential approximation, using the value of τ1 obtained by analyzing data registered by the streak camera. An additional third component obtained by modeling the data of single photon counting describes the P680+Pheo charge recombination. Thus, for the first time the ratio of kP+/kP = 1.5 was determined in a direct experiment. The mechanisms of higher efficiency for non-photochemical antenna fluorescence quenching by RC cation radical in comparison to that of photochemical quenching are discussed.  相似文献   
5.
High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water‐oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane‐inlet mass spectrometry and O2‐polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these ‘PSII birth defects’ in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de‐etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2‐polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB‐inhibitor binding, and thermoluminescence studies indicate that the decline of the high‐light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA?QB during de‐etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer‐range energy transfer.  相似文献   
6.
Yanykin  D. V.  Malferrari  M.  Rapino  S.  Venturoli  G.  Semenov  A. Yu  Mamedov  M. D. 《Photosynthesis research》2019,141(2):165-179
Photosynthesis Research - In the present study, we have investigated the effect of hydroxyectoine (Ect-OH), a heterocyclic amino acid, on oxygen evolution in photosystem II (PS II) membrane...  相似文献   
7.
An electrometrical technique was used to investigate electron transfer between the terminal iron-sulfur centers F(A)/F(B) and external electron acceptors in photosystem I (PS I) complexes from the cyanobacterium Synechococcus sp. PCC 6301 and from spinach. The increase of the relative contribution of the slow components of the membrane potential decay kinetics in the presence of both native (ferredoxin, flavodoxin) and artificial (methyl viologen) electron acceptors indicate the effective interaction between the terminal 14Fe-4S] cluster and acceptors. The finding that FA fails to donate electrons to flavodoxin in F(B)-less (HgCl2-treated) PS I complexes suggests that F(B) is the direct electron donor to flavodoxin. The lack of additional electrogenicity under conditions of effective electron transfer from the F(B) redox center to soluble acceptors indicates that this reaction is electrically silent.  相似文献   
8.
9.
We have studied how low pH affects the water-oxidizing complex in Photosystem II when depleted of the essential Ca(2+) ion cofactor. For these samples, it was found that the EPR signal from the Y(Z)(*) radical decays faster at low pH than at high pH. At 20 degrees C, Y(Z)(*) decays with biphasic kinetics. At pH 6.5, the fast phase encompasses about 65% of the amplitude and has a lifetime of approximately 0.8 s, while the slow phase has a lifetime of approximately 22 s. At pH 3.9, the kinetics become totally dominated by the fast phase, with more than 90% of the signal intensity operating with a lifetime of approximately 0.3 s. The kinetic changes occurred with an approximate pK(a) of 4.5. Low pH also affected the induction of the so-called split radical EPR signal from the S(2)Y(Z)(*) state that is induced in Ca(2+)-depleted PSII membranes because of an inability of Y(Z)(*) to oxidize the S(2) state. At pH 4.5, about 50% of the split signal was induced, as compared to the amplitude of the signal that was induced at pH 6.5-7, using similar illumination conditions. Thus, the split-signal induction decreased with an apparent pK(a) of 4.5. In the same samples, the stable multiline signal from the S(2) state, which is modified by the removal of Ca(2+), was decreased by the illumination to the same extent at all pHs. It is proposed that decreased induction of the S(2)Y(Z)(*) state at lower pH was not due to inability to oxidize the modified S(2) state induced by the Ca(2+) depletion. Instead, we propose that the low pH makes Y(Z)(*) able to oxidize the S(2) state, making the S(2) --> S(3) transition available in Ca(2+)-depleted PSII. Implications of these results for the catalytic role of Ca(2+) and the role of proton transfer between the Mn cluster and Y(Z) during oxygen evolution is discussed.  相似文献   
10.
The series expansion formulae are derived for the overlap integrals with arbitrary integer n and noninteger n* Slater-type orbitals (ISTOs and NISTOs) in terms of a product of well-known auxiliary functions A(sigma) and B (k). The series becomes an ordinary closed expression when both principal quantum numbers n* and n'* of orbitals are integer n*= n and n'*= n'. These formulae are especially useful for the calculation of overlap integrals for large quantum numbers. Accuracy of the results is satisfactory for values of integer and noninteger quantum numbers up to n= n'=60, n*= n'*<33 and for arbitrary values of screening constants of orbitals and internuclear distances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号