首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Microsomal triglyceride transfer protein (Mttp) is a key player in the assembly and secretion of hepatic very low density lipoproteins (VLDL). Here we determined the effects of Mttp overexpression on hepatic triglyceride (TG) and VLDL secretion in leptin-deficient (ob/ob) mice, specifically in relation to apolipoproteinB (apoB) isoforms. We crossed Apobec1(-/-) mice with congenic ob/ob mice to generate apoB100-only ob/ob mice (A-ob/ob). The obesity phenotype in both genotypes was similar, but A-ob/ob mice had greater hepatic TG content. Administration of recombinant adenovirus expressing murine Mttp cDNA (Ad-mMTP) increased hepatic Mttp content and activity and increased hepatic VLDL-TG secretion in A-ob/ob mice. However, despite equivalent overexpression of Mttp, there was no change in VLDL-TG secretion in ob/ob mice in a wild-type Apobec1 background. Metabolic labeling studies in primary hepatocytes from A-ob/ob mice demonstrated that Ad-mMTP increased triglyceride secretion without changing the synthesis and secretion of apoB100, suggesting greater incorporation of TG into existing VLDL particles rather than increased particle number. Ad-mMTP administration failed to increase hepatic VLDL secretion in lean Apobec1(-/-) mice or controls. By contrast, VLDL secretion increased and hepatic TG content decreased following Ad-mMTP administration to human APOB transgenic mice crossed into the Apobec1(-/-) line. These findings demonstrate that Ad-mMTP increases murine hepatic VLDL-TG secretion only in the apoB100 background, and even then only in situations with either increased hepatic TG accumulation or increased apoB100 expression.  相似文献   

2.
The microsomal triglyceride transfer protein (MTP) is essential for the hepatic secretion of apolipoprotein (apo) B-containing lipoproteins. Previous studies have indicated that inhibition of MTP results in decreased apoB plasma levels and decreased hepatic triglyceride secretion. However, the metabolic effects of overexpression of MTP have not been investigated. We constructed a recombinant adenovirus expressing MTP (AdhMTP) and used it to assess the effects of hepatic overexpression of MTP in mice. Injection of AdhMTP into C57BL/6 mice resulted in a 3-fold increase in hepatic microsomal triglyceride transfer activity compared to mice injected with Adnull. On day 4 after virus injection, AdhMTP-injected mice had significantly elevated plasma TG levels as compared to control virus (Adnull)-injected mice. Hepatic TG secretion rates were significantly greater in AdhMTP-injected mice (184 +/- 12 mg/kg/h) compared with Adnull-injected mice (65 +/- 9 mg/kg/h, P < 0.001). In addition, hepatic very low density lipoprotein (VLDL) apoB secretion in the AdhMTP-injected group was 74% higher than in the control virus group. Hepatic secretion of apoB-48 and apoB-100 contributed equally to this increase.These results provide the first data that hepatic overexpression of MTP results in increased secretion of VLDL-triglycerides as well as VLDL-apoB in vivo. These results suggest that MTP is rate-limiting for VLDL apoB secretion in wild-type mice under basal chow-fed conditions.  相似文献   

3.
Fatty liver is prevalent in apolipoprotein B (apoB)-defective familial hypobetalipoproteinemia (FHBL). Similar to humans, mouse models of FHBL produced by gene targeting (apob(+/38.9)) manifest low plasma cholesterol and increased hepatic triglycerides (TG) even on a chow diet due to impaired hepatic VLDL-TG secretive capacity. Because apoB truncations shorter than apoB48 are expressed in the intestine, we examined whether FHBL mice may have limited capacity for intestinal dietary TG absorption. In addition, we investigated whether FHBL mice are more susceptible to diet-induced hepatic TG accumulation. Fat absorption capacity was impaired in apoB38.9 mice in a gene dose-dependent manner. Relative fractional fat absorption coefficients for apob(+/+), apob(+/38.9), and apob(38.9/38.9) were 1.00, 0.96, and 0.71, respectively. To raise hepatic TG, we fed high-fat (HF) and low-fat (LF) pellets. Hepatic TG level was observed in rank order: HF > LF > chow. On both LF and HF, liver TG level was higher in the apob(+/38.9) than in apob(+/+). Hepatic TG secretion remained impaired in the apob(+/38.9) on the HF diet. Thus the FHBL mice are more susceptible to diet-induced fatty liver despite relatively reduced intestinal TG absorption capacity on a HF diet.  相似文献   

4.
Therapeutic agents that suppress apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) levels/activity are being developed in the clinic to benefit patients who are unable to reach target LDL-C levels with maximally tolerated lipid-lowering drugs. To compare and contrast the metabolic consequences of reducing these targets, murine-specific apoB or MTP antisense oligonucleotides (ASOs) were administered to chow-fed and high fat-fed C57BL/6 or to chow-fed and Western diet-fed LDLr−/− mice for periods ranging from 2 to 12 weeks, and detailed analyses of various factors affecting fatty acid metabolism were performed. Administration of these drugs significantly reduced target hepatic mRNA and protein, leading to similar reductions in hepatic VLDL/triglyceride secretion. MTP ASO treatment consistently led to increases in hepatic triglyceride accumulation and biomarkers of hepatotoxicity relative to apoB ASO due in part to enhanced expression of peroxisome proliferator activated receptor γ target genes and the inability to reduce hepatic fatty acid synthesis. Thus, although both drugs effectively lowered LDL-C levels in mice, the apoB ASO produced a more positive liver safety profile.  相似文献   

5.
The present study was designed to investigate the effects of estrogen withdrawal and exercise training on hepatic very low density lipoprotein-triglyceride (VLDL-TG) production and on expression of genes involved in hepatic VLDL synthesis in response to lipid infusion. Female Sprague-Dawley rats underwent ovariectomy (Ovx), sham surgery (Sham), and Ovx with 17β-estradiol supplementation (OvxE2) before being subdivided into sedentary (Sed) and trained (Tr) groups for 8 weeks. Exercise training consisted of continuous running on a rodent treadmill 5 times/wk. At the end of the 8-week period, all rats in the fasted state were intravenously infused with a 20% solution of Intralipid for 3-h followed by an injection of Triton WR-1339 to block lipoprotein lipase activity. Plasma TG accumulation was subsequently measured during 90 min to estimate VLDL-TG production. An additional control group consisting of Sham-Sed rats was infused with saline (0.9% NaCl). Estrogen withdrawal resulted in higher (p<0.01) liver fat accumulation concomitantly with lower (p<0.01) VLDL-TG production and lower mRNA and protein content of hepatic microsomal triglyceride transfer protein (MTP). All of these effects in Ovx rats were corrected with estrogen supplementation. Training in Ovx rats reduced (p<0.01) liver fat accumulation and further reduced (p<0.01) hepatic VLDL-TG production along with gene expression of MTP and diacylglycerol acyltransferase-2 (DGAT-2). It is concluded that VLDL-TG synthesis and/or secretion is decreased in Ovx rats probably via MTP regulation and that this decrease may constitute one of the factors involved in hepatic fat accumulation. The training effect on reducing VLDL production was independent of the estrogenic status.  相似文献   

6.
7.
Microsomal triglyceride transfer protein (MTP) is an intraluminal protein in the endoplasmic reticulum (ER) that is essential for the assembly of apolipoprotein B (apoB)-containing lipoproteins. In this study, we examine how the livers of mice respond to two distinct methods of blocking MTP function: Cre-mediated disruption of the gene for MTP and chemical inhibition of MTP activity. Blocking MTP significantly reduced plasma levels of triglycerides, cholesterol, and apoB-containing lipoproteins in both wild-type C57BL/6 and LDL receptor-deficient mice. While treating LDL receptor-deficient mice with an MTP inhibitor for 7 days lowered plasma lipids to control levels, liver triglyceride levels were increased by only 4-fold. Plasma levels of apoB-100 and apoB-48 fell by >90% and 65%, respectively, but neither apoB isoform accumulated in hepatic microsomes. Surprisingly, loss of MTP expression was associated with a nearly complete absence of apoB-100 in hepatic microsomes. Levels of microsomal luminal chaperone proteins [e.g., protein disulfide isomerase, glucose-regulated protein 78 (GRP78), and GRP94] and cytosolic heat shock proteins (HSPs) (e.g., HSP60, HSC, HSP70, and HSP90) were unaffected by MTP inhibition. These findings show that the liver responds rapidly to inhibition of MTP by degrading apoB and preventing its accumulation in the ER. The rapid degradation of secretion-incompetent apoB in the ER may block the induction of proteins associated with unfolded protein and heat shock responses.  相似文献   

8.
The peroxisome proliferator-activated receptor alpha (PPARα) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (−38%) and TG (−60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[3H]oleate-labeled VLDL-like emulsion particles (−68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [3H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.  相似文献   

9.
Nonalcoholic fatty liver disease (NAFLD) is a very common disorder affecting between 20 and 30% of adults in the United States. However, there is no effective pharmacotherapy for treating NAFLD. Niacin, a water-soluble vitamin (B3), at pharmacological doses, decreases hepatic triglyceride (TG) content in NAFLD through inhibition of diacylglycerol acyltransferase 2, a key enzyme that catalyzes the final step in TG synthesis. Alternatively, some studies indicate that niacin induces fatty liver in high-fat diet (HFD)-fed rats. Therefore, in this study we investigated whether niacin is beneficial in treating NAFLD in two strains of mice, C57BL/6J (B6) and B6129SF2/J (B6129) mice, with 20 weeks of HFD feeding. Niacin treatment was started from week 5 until the end of the study. Niacin treatment increased normalized liver weight, hepatic TG content and NAFLD score in HFD-fed B6129 mice but had no impact on B6 mice. Metabolomics analysis revealed that in B6129 mice, 4-hydroxyphenylpyruvic acid (4-HPP), which is associated with fatty acid oxidation, did not change with HFD feeding but significantly decreased with niacin treatment. Lipidomics analysis discovered that the abundance of phosphocholine (PC), which is critical for very low-density lipoprotein (VLDL)–TG production and secretion, was decreased in HFD-fed B6129 with niacin treatment. In conclusion, niacin had no impact on diet-induced NAFLD development in B6 mice but potentiated hepatic steatosis in HFD-fed B6129 mice due to impaired fatty acid oxidation and decreased VLDL-TG production and secretion.  相似文献   

10.
Elevated hepatic reactive oxygen species play an important role in pathogenesis of liver diseases, such as alcohol-induced liver injury, hepatitis C virus infection, and nonalcoholic steatohepatitis. In the present study, we investigated and compared the hepatic lipid metabolisms of liver-specific Sod2 (superoxide dismutase 2) knock-out (Sod2 KO), Sod1 knock-out (Sod1 KO), and Sod1/liver-specific Sod2 double knock-out mice (double KO). We observed significant increases in lipid peroxidation and triglyceride (TG) in the liver of Sod1 KO and double KO mice but not in the liver of Sod2 KO mice. We also found that high fat diet enhanced fatty changes of the liver in Sod1 KO and double KO mice but not in Sod2 KO mice. These data indicated that CuZn-SOD deficiency caused lipid accumulation in the liver. To investigate the molecular mechanism of hepatic lipid accumulation in CuZn-SOD-deficient mice, we measured TG secretion rate from liver using Triton WR1339. We found significant decrease of TG secretion in CuZn-SOD-deficient mice. Furthermore, we observed marked degradation of apolipoprotein B (apoB) in the liver and plasma of CuZn-SOD-deficient mice, indicating that degradation of apoB impairs secretion of lipoprotein from the liver. Our data suggest that oxidative stress enhances hepatic lipid accumulation by impaired lipoprotein secretion due to the degradation of apoB in liver.  相似文献   

11.
Accumulating evidence suggests that hyperlipidemia is associated with obesity and cancer mortality in humans. We tested the hypotheses that inhibition of microsomal triglyceride transfer protein (MTP) would attenuate obesity-induced hyperlipidemia and reduce tumor growth by treating BCR-ABL B cell tumor-bearing hyperlipidemic obese ob/ob obese mice with a MTP inhibitor. MTP inhibition in tumor-bearing mice reduced concentrations of plasma apoB100 5-fold together with a corresponding decrease in VLDL triacylglycerol (TG) and cholesterol. Inhibition of MTP decreased tumor volume by 50%. MTP inhibitor did not alter tumor cell viability in vitro, suggesting that the in vivo tumor shrinkage effect was related to altered circulating lipids. Tumor volume reduction occurred without change in the protein expression of LDLR, FASN and HMGCR in the tumor, suggesting a lack of compensatory mechanisms in response to decreased hyperlipidemia. Expression of genes encoding GLUT4 and PEPCK was increased 6- and 10-fold, respectively, but no change in the expression of genes encoding regulatory enzymes of glycolysis was observed, suggesting that the tumors were not dependent on or switching to carbohydrates for energy requirement to support their growth. No change of proliferative signaling PI3K/AKT and ERK pathways after MTP inhibition was observed in the tumors. In conclusion, MTP inhibition decreased dyslipidemia and tumor growth in obese, insulin resistant mice. Therefore, decreasing VLDL secretion could be further explored as an adjuvant therapeutic intervention together with standard care to reduce tumor growth in obese patients.  相似文献   

12.
Although microsomal triglyceride transfer protein (MTP) and newly synthesized triglyceride (TG) are critical for co-translational targeting of apolipoprotein B (apoB100) to lipoprotein assembly in hepatoma cell lines, their roles in the later stages of lipoprotein assembly remain unclear. Using N-acetyl-Leu-Leu-norleucinal to prevent proteasomal degradation, HepG2 cells were radiolabeled and chased for 0-90 min (chase I). The medium was changed and cells chased for another 150 min (chase II) in the absence (control) or presence of Pfizer MTP inhibitor CP-10447 (CP). As chase I was extended, inhibition of apoB100 secretion by CP during chase II decreased from 75.9% to only 15% of control (no CP during chase II). Additional studies were conducted in which chase I was either 0 or 90 min, and chase II was in the presence of [(3)H]glycerol and either BSA (control), CP (inhibits both MTP activity and TG synthesis),BMS-1976360-1) (BMS) (inhibits only MTP activity), or triacsin C (TC) (inhibits only TG synthesis). When chase I was 0 min, CP, BMS, and TC reduced apoB100 secretion during chase II by 75.3, 73.9, and 53.9%. However, when chase I was 90 min, those agents reduced apoB100 secretion during chase II by only 16.0, 19.2, and 13.9%. Of note, all three inhibited secretion of newly synthesized TG during chase II by 80, 80, and 40%, whether chase I was 0 or 90 min. In both HepG2 cells and McA-RH7777 cells, if chase I was at least 60 min, inhibition of TG synthesis and/or MTP activity did not affect the density of secreted apoB100-lipoproteins under basal conditions. Oleic acid increased secretion of TG-enriched apoB100-lipoproteins similarly in the absence or presence of either of CP, BMS, or TC. We conclude that neither MTP nor newly synthesized TG is necessary for the later stages of apoB100-lipoprotein assembly and secretion in either HepG2 or McA-RH7777 cells.  相似文献   

13.
Microsomal triglyceride transfer protein (MTP) transfers lipids to apolipoprotein B (apoB) within the endoplasmic reticulum, a process that involves direct interactions between apoB and the large subunit of MTP. Recent studies with heterozygous MTP knockout mice have suggested that half-normal levels of MTP in the liver reduce apoB secretion. We hypothesized that reduced apoB secretion in the setting of half-normal MTP levels might be caused by a reduced MTP:apoB ratio in the endoplasmic reticulum, which would reduce the number of apoB-MTP interactions. If this hypothesis were true, half-normal levels of MTP might have little impact on lipoprotein secretion in the setting of half-normal levels of apoB synthesis (since the ratio of MTP to apoB would not be abnormally low) and might cause an exaggerated reduction in lipoprotein secretion in the setting of apoB overexpression (since the MTP:apoB ratio would be even lower). To test this hypothesis, we examined the effects of heterozygous MTP deficiency on apoB metabolism in the setting of normal levels of apoB synthesis, half-normal levels of apoB synthesis (heterozygous Apob deficiency), and increased levels of apoB synthesis (transgenic overexpression of human apoB). Contrary to our expectations, half-normal levels of MTP reduced the plasma apoB100 levels to the same extent ( approximately 25-35%) at each level of apoB synthesis. In addition, apoB secretion from primary hepatocytes was reduced to a comparable extent at each level of apoB synthesis. Thus, these results indicate that the concentration of MTP within the endoplasmic reticulum rather than the MTP:apoB ratio is the critical determinant of lipoprotein secretion. Finally, we found that heterozygosity for an apoB knockout mutation lowered plasma apoB100 levels more than heterozygosity for an MTP knockout allele. Consistent with that result, hepatic triglyceride accumulation was greater in heterozygous apoB knockout mice than in heterozygous MTP knockout mice.  相似文献   

14.
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.  相似文献   

15.
Hypertriglyceridemia, closely associated with insulin resistance, is induced on high-fat diets (HFD) in humans but not in mouse models. Mechanisms underlying this species difference are still unclear. Hamsters resemble humans in lipoprotein metabolism. Here by comparing the responses to HFD in hamsters and mice, we found that hepatic TG secretion, MTP expression and plasma free fatty acid (FFA) level were increased in hamsters on HFD feeding but decreased in mice. Although hepatic steatosis and de novo lipogenesis were induced by HFD feeding in both models, cholesterol biosynthesis was inhibited in mice but not in hamsters. Moreover, in insulin deficient state, HFD increased plasma TG level, hepatic TG secretion, MTP expression and plasma FFA level in both models. In summary, distinct changes of MTP expression, in correlation with hepatic TG secretion, underlie the opposite responses of plasma TG levels to high-fat diets in hamsters and mice. Furthermore, hepatic TG secretion and MTP expression seems to be associated with plasma FFA level and cholesterol biosynthesis but not hepatic steatosis or de novo lipogenesis.  相似文献   

16.
HMG-CoA reductase inhibitors (statins) are effective lipid-altering drugs for the treatment of dyslipidemia in patients with type 2 diabetes mellitus. We conducted a randomized, double-blind, placebo-controlled, crossover design trial to determine the effects of simvastatin, 80 mg/day, on plasma lipid and lipoprotein levels and on the metabolism of apolipoprotein B (apoB) in VLDL, intermediate density lipoprotein (IDL), and LDL and of triglycerides (TGs) in VLDL. Simvastatin therapy decreased TG, cholesterol, and apoB significantly in VLDL, IDL, and LDL. These effects were associated with reduced production of LDL-apoB, mainly as a result of reduced secretion of apoB-lipoproteins directly into the LDL density range. Statin therapy also reduced hepatic production of VLDL-TG. There were no effects of simvastatin on the fractional catabolic rates of VLDL-apoB or -TG or LDL-apoB. The basis for decreased VLDL-TG secretion during simvastatin treatment is not clear, but recent studies suggest that statins may activate peroxisomal proliferator-activated receptor alpha (PPARalpha). Activation of PPARalpha could lead to increased hepatic oxidation of fatty acids and less synthesis of TG for VLDL assembly.  相似文献   

17.
Systemic inflammation is strongly involved in the pathophysiology of the metabolic syndrome, a cluster of metabolic risk factors that includes hypertriglyceridemia. Aspirin treatment lowers inflammation via inhibition of NF-κB activity but also reduces hypertriglyceridemia in humans. The aim of this study was to investigate the mechanism by which aspirin improves hypertriglyceridemia. Human apolipoprotein CI (apoCI)-expressing mice (APOC1 mice), an animal model with elevated plasma triglyceride (TG) levels, as well as normolipidemic wild-type (WT) mice were fed a high-fat diet (HFD) and treated with aspirin. Aspirin treatment reduced hepatic NF-κB activity in HFD-fed APOC1 and WT mice, and in addition, aspirin decreased plasma TG levels (-32%, P < 0.05) in hypertriglyceridemic APOC1 mice. This TG-lowering effect could not be explained by enhanced VLDL-TG clearance, but aspirin selectively reduced hepatic production of VLDL-TG in both APOC1 (-28%, P < 0.05) and WT mice (-33%, P < 0.05) without affecting VLDL-apoB production. Aspirin did not alter hepatic expression of genes involved in FA oxidation, lipogenesis, and VLDL production but decreased the incorporation of plasma-derived FA by the liver into VLDL-TG (-24%, P < 0.05), which was independent of hepatic expression of genes involved in FA uptake and transport. We conclude that aspirin improves hypertriglyceridemia by decreasing VLDL-TG production without affecting VLDL particle production. Therefore, the inhibition of inflammatory pathways by aspirin could be an interesting target for the treatment of hypertriglyceridemia.  相似文献   

18.
The assembly of very low density lipoproteins in hepatocytes requires the microsomal triacylglycerol transfer protein (MTP). This microsomal lumenal protein transfers lipids, particularly triacylglycerols (TG), between membranes in vitro and has been proposed to transfer TG to nascent apolipoprotein (apo) B in vivo. We examined the role of MTP in the assembly of apoB-containing lipoproteins in cultured murine primary hepatocytes using an inhibitor of MTP. The MTP inhibitor reduced TG secretion from hepatocytes by 85% and decreased the amount of apoB100 in the microsomal lumen, as well as that secreted into the medium, by 70 and 90%, respectively, whereas the secretion of apoB48 was only slightly decreased and the amount of lumenal apoB48 was unaffected. However, apoB48-containing particles formed in the presence of inhibitor were lipid-poor compared with those produced in the absence of inhibitor. We also isolated a pool of apoB-free TG from the microsomal lumen and showed that inhibition of MTP decreased the amount of TG in this pool by approximately 45%. The pool of TG associated with apoB was similarly reduced. However, inhibition of MTP did not directly block TG transfer from the apoB-independent TG pool to partially lipidated apoB in the microsomal lumen. We conclude that MTP is required for TG accumulation in the microsomal lumen and as a source of TG for assembly with apoB, but normal levels of MTP are not required for transferring the bulk of TG to apoB during VLDL assembly in murine hepatocytes.  相似文献   

19.
CCAAT/enhancer binding protein alpha (C/EBP alpha) is a critical factor in glucose metabolism in the neonate as revealed by conventional C/EBP alpha-null mice that do not survive beyond the first day after birth because of severe hypoglycemia and a deficiency in hepatic glycogen accumulation. To elucidate the function of C/EBP alpha in leptin-deficient mouse (ob/ob) liver, a C/EBP alpha-liver null mouse on an ob/ob background (ob/ob-C/EBP alpha/Cre(+)) was produced using a floxed C/EBP alpha allele and Cre recombinase under control of the albumin promoter (AlbCre). The C/EBP alpha-deficient liver in ob/ob mice had significantly decreased triglyceride content compared with equivalent mice lacking the AlbCre transgene (ob/ob-C/EBP alpha/Cre(-)). Expression of genes involved in lipogenesis including fatty acid synthase, acetyl-coenzyme A carboxylase, stearoyl-coenzyme A desaturase 1 and ATP-citrate lyase dramatically decreased in ob/ob-C/EBP alpha/Cre(+) mouse liver. Induction of these lipogenic genes by a high-carbohydrate diet caused an exacerbation in the development of fatty liver and an increase in liver size, hepatic triglyceride, and cholesterol contents in ob/ob-C/EBP alpha/Cre(-) mice but not in ob/ob-C/EBP alpha/Cre(+) mice. Deficiency in hepatic C/EBP alpha expression caused an exacerbation of hyperglycemia because of decreased insulin secretion. Taken together, these results indicate that hepatic C/EBP alpha plays a critical role in the acceleration of lipogenesis in ob/ob mice and in glucose homeostasis by the indirect regulation of insulin secretion.  相似文献   

20.
After de novo biosynthesis phospholipids undergo extensive remodeling by the Lands' cycle. Enzymes involved in phospholipid biosynthesis have been studied extensively but not those involved in reacylation of lysophosphopholipids. One key enzyme in the Lands' cycle is fatty acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which utilizes lysophosphatidylcholine (LysoPC) and fatty acyl-CoA to produce various phosphatidylcholine (PC) species. Four isoforms of LPCAT have been identified. In this study we found that LPCAT3 is the major hepatic isoform, and its knockdown significantly reduces hepatic LPCAT activity. Moreover, we report that hepatic LPCAT3 knockdown increases certain species of LysoPCs and decreases certain species of PC. A surprising observation was that LPCAT3 knockdown significantly reduces hepatic triglycerides. Despite this, these mice had higher plasma triglyceride and apoB levels. Lipoprotein production studies indicated that reductions in LPCAT3 enhanced assembly and secretion of triglyceride-rich apoB-containing lipoproteins. Furthermore, these mice had higher microsomal triglyceride transfer protein (MTP) mRNA and protein levels. Mechanistic studies in hepatoma cells revealed that LysoPC enhances secretion of apoB but not apoA-I in a concentration-dependent manner. Moreover, LysoPC increased MTP mRNA, protein, and activity. In short, these results indicate that hepatic LPCAT3 modulates VLDL production by regulating LysoPC levels and MTP expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号