首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
土壤微生物量的季节变化在陆地生态系统碳循环方面具有重要作用。为阐明中亚热带武夷山不同海拔梯度带土壤微生物量的季节变化规律及其主要影响因子,选择4种不同海拔梯度的植物群落:常绿阔叶林(EBF,500 m)、针叶林(CF,1200 m)、亚高山矮林(DF,1800 m)和高山草甸(AM,2100 m)于2005年6月—2006年6月期间进行了实验研究。结果表明:不同海拔梯度带土壤微生物量均具有明显的季节变化且变化趋势一致,均表现为早春最大,夏季最小;不同海拔梯度带土壤微生物量的季节变化与对应月份的土壤湿度、土壤有效碳均呈显著正相关,而与土壤温度、土壤有机碳、土壤全氮、凋落物输入量等因子相关不显著。土壤有效碳含量、土壤湿度是调控武夷山森林土壤微生物量季节变异的重要生态因子。  相似文献   

2.
赵青  刘爽  陈凯  王世君  吴承祯  李键  林勇明 《生态学报》2021,41(13):5328-5339
为揭示中亚热带常绿阔叶林建群种--甜槠天然林不同海拔土壤有机碳含量垂直分布差异及影响机制,以武夷山自然保护区甜槠天然林单一植被类型为研究对象,在其集中分布的5个海拔梯度(540、700、850、1022、1200 m)范围内设置固定样地,测定每个海拔梯度不同深度土层土壤因子(土壤全氮、全磷、土壤pH值、容重、土壤有机质、粉粒、砂粒、粘粒)、气候因子(土壤温度)、植被因子(细根生物量)及土壤有机碳含量等指标,分析了土壤有机碳沿海拔及垂直土层分布特征,并在主成分分析基础上构建了基于主控因子的线性回归模型。结果表明:(1)同一海拔高度,土壤有机碳含量在土壤垂直剖面分布具有明显的"表聚性"现象;同一土层深度,随着海拔升高,土壤有机碳含量逐渐增加,但增幅随土层深度增加而减小,高海拔地区有助于土壤有机碳的固存;(2)不同土层土壤有机碳含量与海拔、土壤全氮、土壤含水量、土壤粉粒呈极显著正相关(P<0.01),与土壤温度、土壤容重、土壤粘粒、砂粒呈极显著负相关(P<0.01);土壤细根生物量、土壤有机质与土壤有机碳含量在土壤表层(0-10、10-20 cm)呈极显著(P<0.01)或显著正相关(P<0.05);土壤pH值、土壤砂粒与土壤有机碳含量在20-30 cm土层呈显著负相关(P<0.05),但与其他土层关系不显著(P>0.05);海拔因素是影响土壤有机碳含量分布的主要因素,其次为土壤因素,植被因素主要影响土壤表层有机碳含量分布。(3)海拔因素能通过影响与土壤有机碳形成和转化的因子及改变土壤有机碳的累积和分解速率,对土壤有机碳的分布产生影响。(4)多元线性回归模型拟合R2高于一元线性回归模型拟合R2,能解释土壤有机碳含量变异的82.1%-98.1%。由此可见,不同环境因子组合可以更好的解释不同土层土壤有机碳含量随海拔梯度的变异。  相似文献   

3.
沿368~591 mm降水量梯度选取7个调查地点、共63个调查样点,在每个样点选择恢复年限相近的林地、草地和农地,调查表层(0~30 cm)土壤有机碳的分布特征,分析气候、土层深度和土地利用类型等因素对土壤有机碳分布的影响.结果表明: 在黄土丘陵区368~591 mm的降水量范围内,表层土壤有机碳含量表现为草地(8.70 g·kg-1)>林地(7.88 g·kg-1)>农地(7.73 g·kg-1),土壤有机碳密度表现为草地(20.28 kg·m-2)>农地(19.34 kg·m-2)>林地(17.14 kg·m-2).林地、草地、农地的土壤有机碳含量无显著差异,综合3种土地利用类型的数据分析表明,不同降雨梯度下土壤有机碳含量差异显著(P<0.001),土壤有机碳含量(r=0.838,P<0.001)与年均降水量间存在显著线性正相关关系;由北向南(以最北端鄂尔多斯为起点),土壤有机碳含量沿着368~591 mm的年均降水量梯度的递增速率为0.04 g·kg-1·mm-1,土壤有机碳密度的递增速率为0.08 kg·m-2·mm-1.年均降水量、土壤黏粒含量、林下枯落物蓄积量和农作物根系密度可较好地模拟表层土壤有机碳分布.  相似文献   

4.
土地利用变化对土壤有机碳贮量的影响   总被引:97,自引:10,他引:87  
通过对比分析六盘山林区典型天然次生林(杂灌林、山杨和辽东栎林)与农田、草地及农田、草地与人工林(13、18和25年生华北落叶松)邻近样地土壤有机碳含量和密度及其在土壤剖面上分布的差异,研究了天然次生林变成农田或草地及农田或草地造林后对土壤有机碳贮量的影响,结果表明,土壤有机碳含量方面,农田和草地比天然次生林分别低54%和27%,差异主要在0~50cm土层;农田和草地比人工林分别低42%和26%,差异主要在0~40cm土层,土壤有机碳密度方面,农田和草地比天然次生林分别低35%和14%,差异主要在0~50cm土层;农田比人工林低23%,草地比人工林高4%,差异主要在0~30cm土层.天然次生林和人工林土壤有机碳含量和密度随土层加深而递减的幅度比农田或草地大.这些差异主要由土地利用变化引起的土壤有机碳输入与输出及根系分布的变化所致.结果说明六盘山林区天然次生林破坏变成草地或农田后土壤有机碳含量和密度(主要是0~50cm土层)将下降,而农田中造林后土壤有机碳含量和密度(主要是0~30cm土层)又将增加,草地上造林后土壤有机碳含量增加而密度变化不大。另外,土壤有机碳含量和密度在土壤剖面上的分布也将随土地利用变化而发生改变。  相似文献   

5.
以祁连山西水林区青海云杉典型林分为研究对象,按照青海云杉分布界限海拔2500—3300 m,采用梯度格局法,研究祁连山青海云杉林乔木层和土壤层碳密度沿海拔梯度的空间分布特征,以期为准确估算祁连山青海云杉林碳储量变化影响因素提供科学依据。结果表明:(1)青海云杉林生物量平均值为115.83 t/hm~2,碳密度平均值为60.23 t/hm~2。生物量整体随海拔梯度增加表现为先增加后波动降低的趋势,在海拔2800 m处达到最高值(197.10 t/hm~2),海拔3300 m处达到最低值(7.66t/hm~2),且不同海拔梯度间差异显著。林分各器官生物量分配格局在各海拔处均表现为干根枝叶。(2)土壤有机碳含量平均值为54.80 g/kg,变化范围为31.49—76.96 g/kg。随着土壤层次的增加,除海拔3200 m和3300 m的土壤有机碳含量未表现出规律变化外,其他海拔梯度则均呈现出逐渐降低趋势。土壤有机碳密度在海拔2900 m最高,为245.40 t/hm~2,在海拔2700 m处最低,为130.24 t/hm~2;海拔2500—2700 m表现为平缓降低趋势,在2800 m处急剧上升,且海拔2800—3200 m呈现无显著性轻度波动变化,在海拔3300 m又急剧降低。(3)青海云杉林生态系统平均总碳密度为255.15 t/hm~2,乔木层和土壤层占总碳密度的比例分别为23.61%和76.39%,且不同海拔梯度间存在极显著差异。土壤有机碳密度与海拔、年均降水量、土壤有机碳含量、土壤全氮呈显著正相关,与年夏季平均气温呈显著负相关;乔木层碳密度与年夏季气温、林分密度、胸高断面积呈显著正相关,与海拔和土壤全氮呈显著负相关。(4)祁连山青海云杉林乔木层和土壤层碳密度均随海拔梯度变化受水热条件组合的改变而呈现规律变化,以中部海拔区段2800—3200 m碳密度较高。  相似文献   

6.
秦纪洪  王琴  孙辉 《生态学报》2013,33(18):5858-5864
青藏高原东缘亚高山-高山地带土壤碳被认为是我国重要的土壤碳库,作为高海拔低温生态系统,土壤碳对土壤暖化的响应可能也更加敏感。该区域亚高山森林一般分布在海拔3200 m以上,上缘接高山树线和灌丛草地,土壤有机碳含量高。海拔梯度上变化的土壤环境因子是主要土壤温度,海拔梯度上高寒土壤有机碳及活性有机碳组的分布格局,可体现海拔梯度上温度因子对土壤碳动态的影响。对沿海拔3200 m(亚高山针叶林)、3340 m(亚高山针叶林)、3540 m(亚高山针叶林)、3670 m(亚高山针叶林)、3740 m(亚高山针叶林)、3850 m(高山林线)、3940 m(高山树线)、4120 m(高山草地)的土壤表层(0-20 cm)有机碳和活性有机碳组分含量进行分析,结果表明在该海拔范围内,表层土壤总有机碳含量随着海拔的升高而增加,显示高海拔有利于土壤碳的固存;土壤活性有机碳组分中,颗粒态有机碳含量及其占总有机碳比例与海拔呈显著正相关,在海拔最高的4120 m含量和占有机碳总量比例分别达到50.81 g/kg和56.52%。在该海拔范围内海拔越高颗粒态有机碳占有机碳比例越高,显示高海拔土壤有机碳更多以土壤颗粒态碳形式贮存。微生物量碳、水溶性碳、轻组分有机碳与海拔高度没有明显的相关性,表明这些活性有机碳组分受海拔因素影响不大;易氧化有机碳含量与海拔高度显著正相关。因此,颗粒态有机碳含量及其比例可作为高海拔地带土壤活性有机碳库动态的特征指标,表征高海拔地带土壤有机碳动态与贮量受温度影响的指标。  相似文献   

7.
短轮伐期毛白杨不同密度林分土壤有机碳和全氮动态   总被引:1,自引:0,他引:1  
赵雪梅  孙向阳  康向阳  王海燕 《生态学报》2012,32(15):4714-4721
采用裂区试验设计,于2005—2008年连续4年测定了不同造林密度(2 m×2 m、2 m×3 m、2 m×3.5 m、2 m×4 m、2 m×5 m、3 m×3 m、3 m×4 m)下2年生三倍体毛白杨(B304)和对照二倍体(1319)人工林土壤有机碳和全氮含量,以明确不同密度林分土壤有机碳和全氮动态变化规律及其相关性。结果表明:(1)受造林密度、生长时间及其交互作用的显著影响,4年生长期内林地土壤有机碳含量呈先降后升的变化特点。其中,2008年B304在2 m×3 m造林密度下土壤有机碳含量显著高于其它年份,说明此造林密度有利于发挥三倍体毛白杨林土壤固碳的生态功能。(2)4年生长期内,土壤全N含量受生长时间及其与造林密度的交互作用的显著影响。在3 m×3 m造林密度下,二倍体毛白杨林地土壤全N含量逐年降低,而三倍体毛白杨2007年的土壤全N含量显著增加,该造林密度利于三倍体毛白杨林地土壤N的积累。(3)土壤有机碳/全氮比值变化与有机碳含量变化规律一致,且均在2006年达到最低值。(4)在2008年,三倍体毛白杨在2 m×3 m和2 m×3.5 m造林密度下土壤有机碳与全N含量呈现显著正相关关系,而2 m×5 m造林密度下的二倍体毛白杨林地呈显著性负相关关系,体现了毛白杨林地土壤有机碳与全N含量复杂的相关性。  相似文献   

8.
庐山不同海拔森林土壤有机碳密度及分布特征   总被引:16,自引:0,他引:16  
Du YX  Wu CJ  Zhou SX  Huang L  Han SM  Xu XF  Ding Y 《应用生态学报》2011,22(7):1675-1681
为阐明地处中亚热带北部的庐山森林土壤有机碳沿海拔梯度的分布特征,2010年7—8月,分别在庐山的南、北坡按200 m的高差选择6个和5个不同海拔采样点,分层(0~10、10~20、20~30、30~40和>40 cm)采集土样,测定土壤容重、有机碳含量及有机碳密度.结果表明:海拔和坡向显著影响森林土壤有机碳密度.在北坡,随海拔升高,土壤有机碳呈逐渐增加趋势,土壤有机碳含量与土壤容重和pH值呈显著负相关关系;在南坡则没有明显规律.随土层加深,土壤有机碳逐渐下降.北坡和南坡土壤有机碳密度分别为7.07~10.34 kg.m-2和6.03~12.89 kg.m-2.南坡土壤有机碳密度随海拔梯度和土层深度变化的变异性较大,原始植被的破坏和人工林的建立可能是影响土壤有机碳空间分布的重要因素之一.  相似文献   

9.
宫立  刘国华  李宗善  叶鑫  王浩 《生态学报》2017,37(14):4696-4705
土壤碳氮沿海拔梯度变化及其耦合关系是山地生态系统碳氮循环研究的重要内容。为分析不同土层土壤有机碳,土壤全氮及有机碳活性组分在海拔梯度上的分布规律及相互之间的耦合关系,选取亚高山物种岷江冷杉(Abies faxoniana)原始林为研究对象,以卧龙邓生野牛沟岷江冷杉原始林2920—3700 m的样地调查数据为基础,分析不同土层土壤碳氮及活性组分沿海拔的变化规律,总结土壤有机碳稳定性沿海拔主要规律,从土壤有机碳活性组分和碳氮关系的角度揭示其对土壤有机碳沿海拔变化的影响。结果表明:1)腐殖质层土壤有机碳(SOC)随海拔升高逐渐增加,与温度显著负相关,轻组有机碳(LFOC)及颗粒态有机碳(POC)随海拔上升均表现先增加后降低的趋势,土壤全氮(TN)随海拔变化不显著,但林线处LOFC、POC和TN均显著增加;0—10 cm土壤有机碳及全氮则表现为双峰特征,峰值分别在3089 m和3260 m处,与年均温度无显著关系。2)LFOC及POC在腐殖质层和0—10 cm土层中所占比例较大,是表征土壤有机碳含量沿海拔变化规律的主要活性组分,腐殖质层LFOC/SOC和POC/SOC随海拔上升逐渐增高,0—10 cm层则逐渐降低,暗示腐殖质层有机碳稳定性沿海拔逐渐降低,0—10 cm有机碳稳定性逐渐升高。3)SOC与TN显著正相关,SOC是影响TN的主要因子,但腐殖质层TN与有机碳活性组分无显著相关关系。4)土壤C/N和微生物量C/N在3177 m大于25:1,是引起土壤有机碳含量显著降低的主要因素。  相似文献   

10.
庞泉沟自然保护区典型森林土壤大团聚体特征   总被引:9,自引:2,他引:7  
白秀梅  韩有志  郭汉清 《生态学报》2014,34(7):1654-1662
对庞泉沟自然保护区内4种典型森林(云杉-落叶松-杨桦针阔混交林(简称针阔混交林),杨桦阔叶林,沙棘灌木林和华北落叶松林)和撂荒地(对照)0—20cm土层内土壤大团聚体含量及稳定性进行了研究。结果表明,和撂荒地相比,林地土壤大团聚体含量及稳定性显著增加(P0.05)。不同林地0.25mm土壤团聚体含量顺序为:针阔混交林杨桦阔叶林沙棘灌木林华北落叶松林撂荒地。林地0.5mm湿筛水稳性大团聚体含量显著大于撂荒地。根据团聚体破坏率和土壤团聚体水稳性指数,土壤团聚体稳定性由大到小顺序为:针阔混交林沙棘灌木林华北落叶松林杨桦阔叶林撂荒地。根据干湿筛团聚体平均重量直径(MWD)差值分析得稳定性顺序为:杨桦阔叶林针阔混交林沙棘灌木林华北落叶松林撂荒地。相关分析表明,土壤有机碳含量和粘粒含量与干、湿筛土壤大团聚体含量之间呈极显著正相关(P0.01),粘粒含量与MWD(干)和MWD(湿)的差值之间呈极显著负相关(P0.01),土壤容重、土壤通气孔隙和毛管孔隙等也显著影响着土壤大团聚体含量及其MWD(干)和MWD(湿)的差值(P0.05)。研究结果可为该区森林资源的合理经营提供一定的科学依据。  相似文献   

11.
青海省森林土壤有机碳氮储量及其垂直分布特征   总被引:8,自引:0,他引:8  
森林土壤在调节森林生态系统碳、氮循环和减缓全球气候变化中起着关键的作用。但是,由于林型、林龄以及环境因子(海拔)的差异,至今对于森林土壤碳、氮储量的估算依然存在极大的不确定性。因此,利用森林土壤实测数据估算了青海森林土壤有机碳、氮密度和碳、氮储量,分析了土壤有机碳、氮密度的垂直分布格局。结果表明:1)土壤有机碳密度随海拔的增加呈单峰曲线变化,在海拔3100—3400 m达到最大34.33 kg/m~2;氮密度随海拔的增加而增加,范围为1.39—2.93 kg/m~2。2)在0—30 cm土层,土壤有机碳、氮密度均随土层的增加而降低,范围分别为3.84—4.63 kg/m~2、0.22—0.27 kg/m~2。3)青海省森林土壤碳储量为1098.70 Tg,氮储量为61.78 Tg。4)海拔与氮含量和密度之间存在极显著正相关关系(P0.01,P0.01)。土层深度与有机碳含量存在极显著负相关关系(P0.01);与有机碳密度、氮密度存在极显著正相关关系(P0.01,P0.01)。说明海拔和土层是影响青海省森林土壤有机碳、氮分布的关键因子。  相似文献   

12.
天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素   总被引:4,自引:0,他引:4  
对森林土壤有机碳库含量的估测及其影响因素的研究一直是学术界关注的热点。在水热梯度上可能会存在森林土壤有机碳的分布规律,但多数在混交林内开展的工作因无法区分群落类型变化的影响而无法准确反映出森林土壤有机碳在水热梯度上的变化规律。天山云杉森林为纯林类型,在天山山脉巨大山体上呈带状分布(平均海拔下限1750 m至平均海拔上限2760m),存在水热梯度,能够排除混交林中群落类型变化对土壤有机碳的影响。因此,在天山云杉森林带按海拔梯度设置系列样地并采样,用重铬酸钾-氧化外加热法测定土壤有机碳含量并研究土壤有机碳密度沿海拔的分布规律,分析水热配比关系与植物群落(生物量)对该规律的影响。结果表明:①1 m深度的标准土壤剖面上,各海拔梯度的土壤有机碳密度随着剖面深度的增加呈减少的趋势;②各海拔梯度的有机碳主要集中在土壤表面0—40 cm范围内,所占的比例约占全剖面的60%—70%,具有明显的表聚现象;③在天山北坡中段云杉森林带的海拔下限到海拔上限标准剖面总土壤有机碳密度出现不显著的先下降后上升再下降的双峰变化,峰值出现在海拔1800—2000 m与海拔2400—2600 m,海拔2600—2800 m的有机碳密度最小;④云杉纯林在不同海拔的平均胸径呈先减少后增加再减少的趋势,与土壤总有机碳密度变化规律较吻合;⑤天山云杉森林土壤有机碳密度沿海拔的变化是水热梯度变化及受其影响的森林长势二者共同作用的结果。  相似文献   

13.
山西太岳山小流域土壤水分空间异质性及其影响因子   总被引:5,自引:0,他引:5  
以山西太岳山华北落叶松林地为主的小流域作为研究对象,采用地统计学方法结合地理信息系统(GIS)技术手段,研究了接石沟小流域土壤水分(0—60cm)的空间变异特征,以及植被分布和地形因子对其影响规律。结果表明:在时间稳定性的前提下,土壤水分含量和变异系数随土层加深逐渐降低。三层土壤水分半方差函数的最优拟合模型为球状模型,变程范围在1.1—1.4 km,均具有强烈的空间自相关性,其中0—20 cm和20—40 cm层土壤水分的空间异质性程度高于40—60 cm土层,以中间层的结构因素占总变异比例最大。自然结构因素(地形、母质、植被和土壤等)对不同土层土壤水分的总空间变异性起主导作用(81.4%—91.3%),而随机因素(取样误差、人为干扰等)的影响相对较小(8.7%—18.6%)。沿着集水线由西-东方向,从边缘的土壤水分高值斑块区逐渐过渡到明显的低值斑块区,梯度变化明显。研究发现,在植被覆盖异质性小的山地,土壤水分的空间异质性主要由地形因素引起,具体表现为其与坡向指数(TRASP)、坡度、海拔和土壤有机碳、全氮呈极显著相关关系(P0.01),而与植被指数(NDVI)呈弱的负相关关系。叠加分析显示,在阴坡、坡度较缓(15°)及高海拔叠合的区域土壤水分含量较高。研究结果可为山地人工林构建和植被恢复中土壤水资源的利用以及水分管理策略的制定提供理论依据。  相似文献   

14.
Soil respiration (Rs) plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity. Abies nephrolepis is a tree species that prefers the cold and wet environment and is mainly distributed in Northeast Asia and East Asia. The Rs variations of Abies nephrolepis forests communities are generally environmental-sensitive and can effectively reflect the adaptive responses of forest ecosystems to climate change. In this study, the growing-seasonal variations of Rs, soil temperature, soil water content and soil properties of Abies nephrolepis forests were analyzed along an altitude gradient (2000, 2100, 2200 and 2300 m) over two years on Wutai Mountain in North China. As the main results showed, soil respiration keeps the same change trend as soil temperature and reached peaks in July at 2000 m in 2019 and 2020. During 26th July to 25th October in 2019 and 27th May to 23rd October in 2020, on the whole, the soil temperature independently explained 76.2% of Rs variations while the soil water content independently explained 26.8%. Soil temperature and soil water content jointly explained 81.8% of Rs variations. Soil properties explained 61.8% and 69.6% of Rs variation in 2019 and 2020, respectively. Soil organic carbon content and soil enzyme activity had the signifi- cant (P < 0.01) negative and positive relationships, respectively, with Rs variation. With altitudes evaluated from 2000 to 2300 m, soil respiration temperature sensitivity (Q10) and the soil organic carbon content increased by 12.4% and 10.4%, respectively, while invertase activity, cellulase activity and urease activity dropped by 41.2%, 29.45% and 38.19%, respectively. The results demonstrate that (1) soil temperature is the major factor affecting Rs variations in Abies nephrolepis forests; (2) weakened microbial carbon metabolism in high-altitude areas results in the accumulation of soil organic carbon; (3) with a higher Q1, forest ecosystems in high-altitude areas might be more easily affected by climate change; (4) climate warming might accelerate the consumption of soil organic carbon sink in forest ecosystems, especially in high-altitude areas.  相似文献   

15.
飞播马尾松林土壤有机碳空间分布及其影响因子   总被引:4,自引:0,他引:4  
赵芳  欧阳勋志 《生态学报》2016,36(9):2637-2645
以飞播马尾松林为研究对象,通过典型样地调查和样品测定,采用简单相关分析和增强回归树分析(Boosted regression tree analysis:BRT)相结合的方法分析地形、林分、土壤以及林下植被条件对飞播马尾松林土壤有机碳的影响。结果表明:飞播马尾松林0—10 cm、10—20 cm土层有机碳含量的平均值分别为10.22 g/kg和6.64 g/kg,土壤有机碳含量随土层的加深而降低,两土层有机碳含量的变异系数分别为59.5%和60.1%,均属于中等程度变异。土壤有机碳含量主要受土壤条件的影响,其次为林分条件、地形条件和林下植被条件,土壤、林分、地形和林下植被条件对0—10 cm土层有机碳含量的相对影响力分别为63.4%,19.3%,10.9%和6.4%,对10—20 cm土层的相对影响力分别为60.4%,21.9%,10.6%和7.1%。全氮和全磷是影响土壤有机碳含量的主要因子,对0—10 cm土层有机碳含量影响最大的因子是全氮,其相对影响力为40.2%,对10—20 cm土层有机碳含量影响最大的因子是全磷,相对影响力为31.2%;全氮、全磷和平均胸径与两土层有机碳含量均呈显著正相关,林分密度和土壤容重与0—10 cm土层有机碳含量呈显著负相关,坡向与0—10 cm土层有机碳含量则表现为越向阳坡有机碳含量越高的规律,其他影响因子与土壤有机碳的相关性不显著。  相似文献   

16.
海拔梯度可能通过多种环境因子影响土壤有机质,土壤有机碳库是土壤有机质的重要组成部分,其微小变化将会产生极其重要的影响。因此海拔差异可能导致海拔间土壤碳库差异。土壤有机碳是反映土壤肥力的重要指标,可能受土壤理化性质和微生物等多种因素的影响。黄山松是高山地绿化和用材的优良树种,近年来戴云山自然保护区内高海拔地区的黄山松群落呈现衰退趋势。研究戴云山黄山松林土壤有机碳组分沿海拔梯度的变化情况,不仅可以为该区域碳库估算提供科学依据,而且有助于揭示影响黄山松生长变化的机理。因此,选取戴云山不同海拔[1300 m (L)、1450 m (M)和1600 m (H)]梯度的黄山松林,对其土壤基本理化性质、有机碳组分及微生物特征进行测定和分析。研究发现,海拔梯度下土壤养分含量呈先升高后降低的变化趋势,土壤碳组分含量与其变化一致,且微生物生物量碳和微生物生物量氮均在M海拔处最高,海拔梯度对碳水解酶没有显著影响。冗余分析表明,总氮是影响土壤有机碳变化的最主要因素,其次是碳氮比。因此在海拔跨度不大的情况下,土壤有机碳动态可能主要受氮素而非温度的影响。高海拔地区土壤惰性碳占比高,未来可能会持续加剧该地区黄山松的生长困境,使该区域碳库受到影响。  相似文献   

17.
细根是植物吸收水分和养分的主要器官。全球变暖背景下,研究森林细根生物量及其环境因子的变化对生态系统碳平衡、碳收支及其贡献率具有重要意义。采用土钻法和室内分析法对青海省森林6个海拔梯度上5种林分类型的细根生物量和土壤理化性质进行测定,并分析了与环境因子之间的相互关系。结果表明:(1)青海省森林0—40 cm土层总细根生物量平均为8.50 t/hm~2,随着海拔梯度的增加先降低后升高,不同海拔梯度细根生物量差异显著(P0.05),最大值出现在2100—2400 m处。(2)5种林分0—40 cm土层总细根生物量为:白桦白杨云杉圆柏山杨,不同林分间细根生物量差异不显著。(3)细根垂直分布随土层深度增加而减少,且70%的细根集中在表层(0—20 cm)。(4)土壤容重深层(20—40 cm)显著大于表层(P0.05),并随海拔梯度逐步增加,且林分间差异较大。(5)全碳(Total carbon, TC)、全氮(Total nitrogen, TN)、全磷(Total phosphorus, TP)含量表层显著高于深层。TC、TN随海拔升高先增后降低,TP则随海拔逐步降低。不同林分间土壤养分差异较明显。(6)结构方程模型分析得到海拔、土层、容重直接影响细根生物量,细根生物量直接影响土壤养分。林分类型通过土壤容重间接影响细根生物量。因此,林分和海拔通过影响土壤微环境而影响到细根生物量及其空间分布格局。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号