首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Chitosan-degrading activity was detected in the culture fluid of Aspergillus oryzae, A. sojae, and A. flavus among various fungal strains belonging to the genus Aspergillus. One of the strong producers, A. oryzae IAM2660 had a higher level of chitosanolytic activity when N-acetylglucosamine (GlcNAc) was used as a carbon source. Two chitosanolytic enzymes, 40 kDa and 135 kDa in molecular masses, were purified from the culture fluid of A. oryzae IAM2660. Viscosimetric assay and an analysis of reaction products by thin-layer chromatography clearly indicated the endo- and exo-type cleavage manner for the 40-kDa and 135-kDa enzymes, respectively. The 40-kDa enzyme, designated chitosanase, catalyzed a hydrolysis of glucosamine (GlcN) oligomers larger than pentamer, glycol chitosan, and chitosan with a low degree of acetylation (0-30%). The 135-kDa enzyme, named exo-β-D-glucosaminidase, released a single GlcN residue from the GlcN oligomers and chitosan, but did not release GlcNAc residues from either GlcNAc oligomer or colloidal chitin.  相似文献   

2.
An extracellular 104 kDa exo-beta-d-glucosaminidase was purified and characterized from the culture supernatant of Aspergillus fumigatus S-26, which showed exceptionally strong chitosanolytic enzyme activity. The purified enzyme showed optimum pH of 3.0-6.0 and optimum temperature of 50-60 degrees C, and was stable between pH 2.0 and 10.0 and under 35 degrees C. The Km, Vmax, and kcat were determined to be 1.0 mg chitosan/ml, 7.8x10(-8) mol/s/mg protein, and 28.3 s-1, respectively. The exo-beta-D-glucosaminidase was severely inactivated by Cu2+ and Hg2+ at 10 mM. 2-Hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, and p-chloromercuribenzoic acid inhibited the enzyme. The enzyme did not degrade chitin, cellulose, and starch. The exo-beta-D-glucosaminidase did not reduce the viscosity of chitosan solutions at early stage of reaction, suggesting the exo-type of cleavage in polymeric chitosan chains. The exo-beta-D-glucosaminidase liberated only GlcN from chitosan, and GlcN plus the one-residue shortened oligomers from (GlcN)2-7. The exo-beta-D-glucosaminidase exhibited transglycosylation activity, resulting in the one-residue elongated oligomers.  相似文献   

3.
Chitosanase II was purified from the culture filtrate of Aspergillus fumigatus ATCC13073. The purified enzyme had a molecular mass of 23.5 kDa. The N-terminal amino acid sequence of chitosanase II was identical to those of other Aspergillus chitosanases belonging to glycoside hydrolase family 75. The optimum pH and temperature were pH 6.0 and 40 °C. Chitosanase II hydrolyzed 70% deacetylated chitosan faster than fully deacetylated chitosan. Analysis of the degradation products generated from partially N-acetylated chitosan showed that chitosanase II split GlcN-GlcN and GlcNAc-GlcN bonds but not GlcNAc-GlcNAc or GlcN-GlcNAc, suggesting that it is a subclass I chitosanase. It degraded (GlcN)(6) to produce (GlcN)(3) as main product and small amounts of (GlcN)(2) and (GlcN)(4). Reaction rate analyses of mono-N-acetylated chitohexaose suggested that the (+3) site of chitosanase II recognizes the GlcNAc residue rather than the GlcN residue of its substrate.  相似文献   

4.
Bacillus circulans IAM1165 produces isoforms of beta-1,3-glucan-hydrolases. Of these enzymes, the 42-kDa enzyme BgIM degrades Aspergillus oryzae cell walls the most actively. A gene coding for a BgIM precursor consisting of 411 amino acid residues was cloned. The 27 N-terminal amino acid sequence of the precursor is a signal peptide. The 141 C-terminal amino acid sequence showed a motif of carbohydrate-binding module family 13. This domain bound to pachyman, lichenan, and A. oryzae cell walls. The central domain showed a bacterial beta-1,3-glucan-hydrolase motif belonging to glycosyl hydrolase family 16. By removal of the C-terminal domain in the IAM1165 culture, mature BglM was processed to several 27-kDa fragments that hydrolyze a soluble beta-1,3-glucan.  相似文献   

5.
A gene coding for a major extracellular chitosanase was isolated from Aspergillus oryzae IAM2660. It had a multi-domain structure composed of a signal peptide, a catalytic domain, Thr- and Pro-rich linkers, and repeated peptides (the R3 domain) from the N-terminus. The R3 domain bound to insoluble powder chitosan, but it did not promote the hydrolysis rate of the chitosanase to any extent.  相似文献   

6.
Chitosan-degrading activities induced by glucosamine (GlcN) or N-acetylglucosamine (GlcNAc) were found in a culture filtrate of Trichoderma reesei PC-3-7. One of the chitosan-degrading enzymes was purified to homogeneity by precipitation with ammonium sulfate followed by anion-exchange and hydrophobic-interaction chromatographies. The enzyme was monomeric, and its molecular mass was 93 kDa. The optimum pH and temperature of the enzyme were 4.0 and 50 degrees C, respectively. The activity was stable in the pH range 6.0 to 9.0 and at a temperature below 50 degrees C. Reaction product analysis from the viscosimetric assay and thin-layer chromatography and H nuclear magnetic resonance spectroscopy clearly indicated that the enzyme was an exo-type chitosanase, exo-beta-d-glucosaminidase, that releases GlcN from the nonreducing end of the chitosan chain. H nuclear magnetic resonance spectroscopy also showed that the exo-beta-d-glucosaminidase produced a beta-form of GlcN, demonstrating that the enzyme is a retaining glycanase. Time-dependent liberation of the reducing sugar from partially acetylated chitosan with exo-beta-d-glucosaminidase and the partially purified exo-beta-d-N-acetylglucosaminidase from T. reesei PC-3-7 suggested that the exo-beta-d-glucosaminidase cleaves the glycosidic link of either GlcN-beta(1-->4)-GlcN or GlcN-beta(1-->4)-GlcNAc.  相似文献   

7.
A genomic copy of the gene coding for chitosanase (csnA) was isolated from Aspergillus oryzae IAM 2660. A. oryzae csnA contains an open reading frame that encodes a polypeptide of 245 amino acids with a calculated molecular mass of 26,500 Da. The deduced amino acid sequence of A. oryzae csnA indicates extensive similarities to those of other fungal chitosanases.  相似文献   

8.
Glutaminase is an enzyme that catalyzes the hydrolysis of l-glutamine to l-glutamate, and it plays an important role in the production of fermented foods by enhancing the umami taste. By using the genome sequence and expressed sequence tag data available for Aspergillus oryzae RIB40, we cloned a novel glutaminase gene (AsgahA) from Aspergillus sojae, which was similar to a previously described gene encoding a salt-tolerant, thermostable glutaminase of Cryptococcus nodaensis (CnGahA). The structural gene was 1,929 bp in length without introns and encoded a glutaminase, AsGahA, which shared 36% identity with CnGahA. The introduction of multiple copies of AsgahA into A. oryzae RIB40 resulted in the overexpression of glutaminase activity. AsGahA was subsequently purified from the overexpressing transformant and characterized. While AsGahA was located at the cell surface in submerged culture, it was secreted extracellularly in solid-state culture. The molecular mass of AsGahA was estimated to be 67 kDa and 135 kDa by SDS-PAGE and gel filtration chromatography, respectively, indicating that the native form of AsGahA was a dimer. The optimal pH of the enzyme was 9.5, and its optimal temperature was 50°C in sodium phosphate buffer (pH 7.0). Analysis of substrate specificity revealed that AsGahA deamidated not only free l-glutamine and l-asparagine but also C-terminal glutaminyl or asparaginyl residues in peptides. Collectively, our results indicate that AsGahA is a novel peptidoglutaminase-asparaginase. Moreover, this is the first report to describe the gene cloning and purification of a peptidoglutaminase-asparaginase.  相似文献   

9.
A new enzyme capable of hydrolyzing chitobiose, which is an induced enzyme, was purified to apparent homogeneity from the culture filtrate of Nocardia orientalis IFO 12806. Biospecific affinity chromatography on chitotriitol-Sepharose CL-4B was effective for purification of this enzyme. It is clearly demonstrated that the enzyme is an exo-hydrolase, removing single glucosamine residues from the nonreducing terminal of a sequence of beta-(1----4)-linked glucosamine chain, such as chitosan and chitooligosaccharides, and therefore characterized as an exo-beta-D-glucosaminidase. The enzyme was found to show maximum activity on chitotetraose, chitopentaose, and their corresponding alcohols and a slight decrease in rate on longer chain lengths of substrates. A significant decrease in rate was observed using p-nitrophenyl beta-D-glucosaminide and chitobiitol as substrates. In the hydrolysis of partially acetylated chitosans, the enzyme appeared to be effective in cleaving glucosamine from the GlcN beta 1----4GlcNAc beta 1----sequence as well as the GlcN beta 1----4GlcN beta 1----sequence. These observations suggest that the second residue from the terminal plays an important role in enzyme activity, but the enzyme permits the replacement of glucosamine at the second residue by N-acetylglucosamine.  相似文献   

10.
Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16   总被引:1,自引:0,他引:1  
An extracellular 45 kDa endochitosanase was purified and characterized from the culture supernatant of Bacillus sp. P16. The purified enzyme showed an optimum pH of 5.5 and optimum temperature of 60 degrees C, and was stable between pH 4.5-10.0 and under 50 degrees C. The Km and Vmax were measured with a chitosan of a D.A. of 20.2% as 0.52 mg/ml and 7.71 x 10(-6) mol/sec/mg protein, respectively. The enzyme did not degrade chitin, cellulose, or starch. The chitosanase digested partially N-acetylated chitosans, with maximum activity for 15-30% and lesser activity for 0-15% acetylated chitosan. The chitosanase rapidly reduced the viscosity of chitosan solutions at a very early stage of reaction, suggesting the endotype of cleavage in polymeric chitosan chains. The chitosanase hydrolyzed (GlcN)7 in an endo-splitting manner producing a mixture of (GlcN)(2-5). Time course studies showed a decrease in the rate of substrate degradation from (GlcN)7 to (GlcN)6 to (GlcN)5, as indicated by the apparent first order rate constants, k1 values, of 4.98 x 10(-4), 2.3 x 10(-4), and 9.3 x 10(-6) sec(-1), respectively. The enzyme hardly catalyzed degradation of chitooligomers smaller than the pentamer.  相似文献   

11.
Bacillus circulans IAM1165 produces isoforms of β-1,3-glucan-hydrolases. Of these enzymes, the 42-kDa enzyme BglM degrades Aspergillus oryzae cell walls the most actively. A gene coding for a BglM precursor consisting of 411 amino acid residues was cloned. The 27 N-terminal amino acid sequence of the precursor is a signal peptide. The 141 C-terminal amino acid sequence showed a motif of carbohydrate-binding module family 13. This domain bound to pachyman, lichenan, and A. oryzae cell walls. The central domain showed a bacterial β-1,3-glucan-hydrolase motif belonging to glycosyl hydrolase family 16. By removal of the C-terminal domain in the IAM1165 culture, mature BglM was processed to several 27-kDa fragments that hydrolyze a soluble β-1,3-glucan.  相似文献   

12.
Bacillus circulans IAM1165 produces three major extracellular beta-1,3-glucanases (molecular masses, 28, 42, and 91 kDa) during the stationary phase of growth. The 28- and 42-kDa enzymes were purified to homogeneity from the culture supernatant in this study. The properties of these two enzymes were examined, together with those of the 91-kDa enzyme previously isolated. The enzymatic properties of the 28- and 42-kDa beta-1,3-glucanases closely resemble each other. The enzymes belong to a category of endo type 1,3-beta-D-glucan glucanohydrolases. The enzymes were active at pH 4.0 to 7.0. The optimum temperature of the reactions was 60 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate at pH 7.0. The enzymes hydrolyzed barley glucan and lichenan (beta-1,3-1,4-glucans) more effectively than laminarin. Of the three enzymes, the 42-kDa enzyme lysed fungal cell walls the most effectively.  相似文献   

13.
Oligosaccharides produced during the course of the hydrolysis of 25% N-acetylated chitosan by Streptomyces griseus chitinase were fractionated by CM-Sephadex C-25 and Toyopearl HW-40F column chromatographies. Sugar compositions and sequences of main oligosaccharides were identified by N-acetylation, exo-splitting with β-GlcNAcase and β-GlcNase, and nitrous acid degradation. In addition to N-acetylated saccharides, GlcNAc, (GlcNAc)2, and (GlcNAc)3, hetero-chitooligosaccharides such as GlcN · GlcNAc, GlcN · GlcNAc · GlcNAc, GlcN · GlcN · GlcNAc, GlcN · GlcNAc · GlcNAc · GlcNAc, GlcNAc · GlcN · GlcNAc · GlcNAc, GlcN · GlcNAc · GlcN · GlcNAc, and GlcN · GlcN · GlcNAc · GlcNAc were identified. These results indicate that Streptomyces griseus chitinase specifically cleaves the N-acetyl-β-d-glucosaminidic linkages in partially N-acetylated chitosan.  相似文献   

14.
The hydrolyzate of partially N-acetylated chitosan by Bacillus sp. No. 7-M chitosanase was separated by gel filtration on Bio-Gel P-2. Sugar compositions and sequences of the oligosaccharides were identified by exo-splitting with beta-GlcNase, fast atom bombardment mass spectroscopy, and proton NMR spectroscopy. In addition to chitooligosaccharides, (GlcN)2, (GlcN)3, and (GlcN)4, hetero-chitooligosaccharides such as (GlcN)2.GlcNAc.(GlcN)2, GlcN.GlcNAc.(GlcN)3, (GlcN)2.GlcNAc.(GlcN)3, and GlcN.GlcNAc.(GlcN)4 were detected. These results indicate that Bacillus sp. No. 7-M chitosanase is absolutely specific toward the GlcN.GlcN bonds in partially N-acetylated chitosan and at least three GlcN residues were necessary to the hydrolysis of chitosan by chitosanase.  相似文献   

15.
Chitosan oligosaccharides (oligomers of (GlcNAc)x(GlcN)y) are used in the pharmaceutical, cosmetic and food industries and are reported to have therapeutic benefits. However, it is unknown whether their biological activity depends on the degree of deacetylation or the sequence of residues within the oligomer. We report here the development of a random mutagenesis method for directed evolution of Streptomyces lividans acetyl xylan esterase (AxeA), which we previously showed is able to deacetylate chitinous substrate, in order to obtain chitooligosaccharides with well-defined structural properties. A colorimetric assay was used to pre-screen libraries for p-nitrophenol acetate hydrolysis activity and an HPLC-UV absorbance assay was optimized to subsequently screen for deacetylase activity toward hexa-N-acetyl-glucosamine substrate (GlcNAc)6. Native AxeA and two variants displaying > 50% deacetylation of the oligohexamer substrate after reaction at 50 °C for 24 h in diluted culture supernatant were then selected for detailed analysis of the enzymatic products. A HILIC (hydrophilic interaction chromatography)-mode LC method was developed for profiling the deacetylated chitooligosaccharide products and HILIC-MS/MS sequencing revealed that ca. 30 different deacetylation products ranging from (GlcNAc)5(GlcN)1 to (GlcNAc)1(GlcN)5 and isomers thereof were produced. The AxeA variants produced, on average, 26% more unique products than the native enzyme; however, none were able to fully deacetylate the substrate to make (GlcN)6. The long term goal of this multidisciplinary approach is to improve the activity of chitosan oligosaccharides to an industrially applicable level.  相似文献   

16.
Sun Y  Liu W  Han B  Zhang J  Liu B 《Biotechnology letters》2006,28(17):1393-1399
Two extracellular chitosanases (ChiX and ChiN) were extracted from Microbacterium sp. OU01 with Mr values of 81 kDa (ChiX) and 30 kDa (ChiN). ChiN was optimally active at pH 6.2 and 50°C and ChiX at pH 6.6 and 60°C (assayed over 15 min). Both the activities increased with the degree of deacetylation (DDA) of chitosan. ChiN hydrolyzed oligomers of glucosamine (GlcN) larger than chitopentaose, and chitosan with 62–100% DDA; but ChiX acted on chitosan and released GlcN. Hydrolysis of chitosan with 99% DDA by ChiN released chitobiose, chitotriose and chitotetraose as the major products.  相似文献   

17.
A chitosanase was purified from the culture fluid of the chitino- and chitosanolytic bacterium Burkholderia gladioli strain CHB101. The purified enzyme (chitosanase A) had a molecular mass of 28 kDa, and catalyzed the endo-type cleavage of chitosans having a low degree of acetylation (0–30%). The enzyme hydrolyzed glucosamine oligomers larger than a pentamer, but did not exhibit any activity toward N-acetyl-glucosamine oligomers and colloidal chitin. The gene coding for chitosanase A (csnA) was isolated and its nucleotide sequence determined. B. gladioli csnA has an ORF encoding a polypeptide of 355 amino acid residues. Analysis of the N-terminal amino acid sequence of the purified chitosanase A and comparison with that deduced from the csnA ORF suggests post-translational processing of a putative signal peptide and a possible substrate-binding domain. The deduced amino acid sequence corresponding to the mature protein showed 80% similarity to the sequences reported from Bacillus circulans strain MH-K1 and Bacillus ehimensis strain EAG1, which belong to family 46 glycosyl hydrolases. Received: 30 July 1999 / Revised revision: 17 February 2000 / Accepted: 25 February 2000  相似文献   

18.
Two endoxylanases were purified from the culture medium of Trichoderma longibrachiatum. Both enzymes were highly basic, and lacked activity on carboxymethyl-cellulose. An enzyme of 21.5 kDa (xylanase A) had a specific activity of 510 U/mg protein, a Km of 0.15 mg soluble xylan/ml, possessed transglycosidase activity and generated xylobiose and xylotriose as the major endproducts from xylan or xylose oligomers. A larger enzyme of 33 kDa (xylanase B) had a specific activity of 131 U/mg protein, a Km of 0.19 mg soluble xylan/ml, lacked detectable transglycosidase activity and generated xylobiose and xylose as major endproducts from xylan and xylose oligomers. Xylotriose was the smallest oligomer attacked by both enzymes. In addition, xylotriose inhibited hydrolysis of xylopentanose by both enzymes, while xylobiose appeared to inhibit xylanase B, but not xylanase A.  相似文献   

19.
A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger.  相似文献   

20.
A quantitative fluorometric assay for chitosanase activity in bacterial and plant tissues was developed. The assay can be conducted with either finely milled preparations of chitosan in suspension or dissolved chitosan; activity is based on measurements of glucosamine (GlcN) or oligomers of GlcN. GlcN is detected fluorometrically after reaction with fluorescamine with detection in the nanomole range. Fluorescence measurements of chitosanase activity and radioassay of chitinase in commercial preparations of chitinase from Streptomyces griseus revealed that both activities were present. Specific activities for the S. griseus chitosanase using suspended and soluble chitosans were respectively 1.24 and 6.4 mumol GlcN.min-1.mg protein-1. Specific activity of the S. griseus chitinase was 0.98 mumol GlcN.min-1.mg protein-1. Sweet orange callus tissue was tested for chitosanase and chitinase activity. It was necessary to remove small amine-containing molecules from the callus preparations before chitosanase activity could be assayed. The specific activity for chitinase and chitosanase in desalted extracts of nonembryogenic Valencia sweet orange callus tissue was determined to be 18.6 and 89.4 nmol GlcN.min-1.mg protein-1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号