首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The aims of the present study were to compare (1) Holstein-Friesian heifers versus early postpartum lactating cows, and (2) different age categories of crossbred beef heifers versus cows, in terms of oocyte yield, morphological quality and developmental competence. Four experiments were designed to test the associated hypotheses. In Experiment 1, ovum pick up was carried out twice weekly for a period of 5 weeks on Holstein-Friesian heifers (n = 8) and early postpartum cows (n = 8). Oocytes were submitted to in vitro maturation (IVM), fertilization and culture. Significantly more follicles were punctured on the ovaries of heifers than cows (10.4 versus 7.8, P < 0.001). This was reflected in a significantly higher number of total oocytes (4.7 versus 2.8, P < 0.001) and grade 1-2 oocytes recovered/animal from heifers than from cows (3.0 versus 1.8, P < 0.05). There was no significant difference in the percentage of oocytes cleaving after fertilization, or in the percentage reaching the blastocyst stage between heifers and cows. In Experiment 2, oocytes were obtained by manual aspiration from the ovaries of slaughtered crossbred beef heifers (under 30 months, n = 1241) and cows (over 4 years old, n = 1125), and processed in vitro as above. No significant difference was observed between the two groups in terms of the number of aspirated follicles or oocytes recovered. A significantly higher proportion (P < 0.01) of cow oocytes than heifer oocytes reached the blastocyst stage (Day 8: 46.5% versus 33.4%). In Experiment 3, ovaries were separated according to age of heifer into three groups: (1) 12-18 months, (2) 19-24 months and (3) 25-30 months, and compared with cow oocytes. There was no significant difference in the blastocyst yield between the different age groups of heifers. Irrespective of heifer age, the blastocyst yield on Day 8 was significantly lower than that from cow oocytes (35.0, 35.2, 36.5 and 48.3%, respectively, P < 0.05). In Experiment 4, a significantly higher proportion (P < 0.001) of presumptive zygotes derived from abattoir-derived cow oocytes reached the blastocyst stage following culture in vivo in the ewe oviduct than those derived from heifer oocytes (Day 8: 53.1% versus 25.2% for cow and heifer oocytes, respectively). In conclusion, the origin of the oocyte has a significant impact on its subsequent developmental potential. These results would suggest that in an in vitro production system, cow oocytes should be preferentially used over those from heifers in order to maximize blastocyst development.  相似文献   

2.
In vitro studies have shown that Bos taurus indicus (B. t. indicus) embryos submitted to heat shock at early stages of development are better able to survive as compared to Bos taurus taurus embryos. Embryo genotype influences resistance to heat shock thus leading to the question as to whether embryos sired by thermo-tolerant breeds exhibit the same resistance to heat shock. In the present study the influence of both oocyte and semen, on the resistance to heat shock (HS) at early stages of in vitro development, was assessed in B. t. indicus [Nelore (N) breed], B. t. taurus [Holstein (H) and Angus (A) breeds] and crossbreds. In Experiment 1, Nelore and crossbred oocytes were collected from slaughterhouse ovaries and fertilized with spermatozoa from Nelore and Angus bulls. Presumptive embryos were collected and randomly assigned to control (39 degrees C) or HS at 12, 48 or 96 h post insemination (hpi; 41 degrees C for 12h) treatments. The cleavage rates and proportion of embryos developing to the blastocyst and hatched blastocyst stages were recorded on Days 2, 8 and 10, respectively. Heat shock treatment decreased development of both Nelore and crossbred embryos. There was a significant interaction between time (12, 48 or 96 hpi) and temperature for blastocyst rates, i.e., the embryos became more thermotolerant as development proceeded. In Experiment 2, oocytes from Nelore and Holstein cows were fertilized with semen from bulls of either Nelore or Angus breeds, and subjected to 12 h HS at 96 hpi. Heat shock at 96 hpi, decreased embryo development. Additionally, cowxtreatment and bullxtreatment interactions were significant for blastocyst rates, i.e., both breed of cow and breed of bull affected the decline in blastocyst rate caused by heat shock treatment. In conclusion, the present results indicate that Nelore embryos (indicus) are more resistant to heat shock than Holstein (taurus) at early stages of in vitro development, and that embryos become more thermo-tolerant as development proceeds. Additionally, the resistance to heat shock was a result of the genetic contribution from both oocyte and spermatozoa.  相似文献   

3.
In vitro embryo production and exploitation of heterosis are two methods of increasing productivity and accelerating genetic progress in many cattle production systems. However, it is not known if heterosis exists in bovine embryos produced in vitro. Tests for heterosis in in vitro embryo production were conducted in two experiments using reciprocal crosses. In the first, gametes from Bos taurus and Bos indicus were used; in the second, gametes from dairy and beef breeds of Bos taurus were used. In each experiment, both parental groups were used as sperm and oocyte donors, producing crossbred and purebred embryos. Oocytes obtained from abattoir-derived ovaries underwent in vitro maturation and in vitro fertilization with frozen semen. Embryos were cultured to blastocyst stage and observed. In the first experiment, higher (P < 0.05) rates of blastocyst formation were found for Bos taurus both as sires and as dams. Approximately 36% of the purebred Bos taurus oocytes and 21% of the purebred Bos indicus oocytes developed to blastocyst. Crosses averaged 16% resulting in a heterosis estimate of 45%. Ovaries from Bos indicus cows had more harvestable oocytes than did those from Bos taurus cows (P < 0.05). No evidence for heterosis was found for crosses within Bos taurus. Oocytes from beef cows had a higher rate of blastocyst formation than did those from dairy cows (30 vs. 24%, P < 0.05). These seemingly disparate results concerning heterosis were discussed in light of the period of genetic isolation of the parental populations in the two experiments.  相似文献   

4.
The objectives of this study were 1) to measure cleavage, blastocyst formation, and blastocyst hatching after in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of oocytes aspirated from pregnant versus nonpregnant cows, and 2) to compare embryo development in co-culture with bovine oviductal epithelial cells versus cumulus cells. No differences in cleavage (38 versus 40%), blastocyst formation (13 versus 13%), or blastocyst hatching (53 versus 51%) were observed for in vitro-matured, fertilized, and cultured oocytes from pregnant versus nonpregnant cows, respectively (P > 0.05), indicating that nonpregnant and early-pregnant cows are equally acceptable donors of oocytes for IVM/IVF/IVC procedures. Cleavage (36 versus 40%), blastocyst formation (11 versus 12%), and blastocyst hatching (50 versus 55%) were not different for embryos co-cultured with oviductal epithelial cells versus cumulus cells (P > 0.05). Thus, equivalent embryo development can be obtained with co-culture systems commonly used for in vitro-derived bovine embryos. These results help to define variables that affect comparison of results across laboratories and that are relevant to the practical application of IVM/IVF/IVC procedures to cattle.  相似文献   

5.
No information is available concerning how the maturation environment controls the metabolism of goat oocytes. The objectives of this experiment were to: (1) Determine the concentrations of glucose, lactate, and pyruvate in caprine follicular fluid; and (2) Investigate the effects of physiological concentrations of glucose and lactate in the in vitro maturation (IVM) medium on the metabolism (glycolysis and pyruvate oxidation), protein content, and developmental competence of caprine oocytes and cumulus-oocyte complexes (COCs). Abattoir-derived COCs were matured for 18-20 hr in a defined, SOF-based medium containing 0.75, 1.5 (follicular fluid = 1.4 mM), or 3.0 mM glucose, and 3.0, 6.0 (follicular fluid = 7.1 mM), or 12.0 mM L-lactate. The protein content of oocytes and COCs was not affected (P > 0.05) by the concentration of glucose and lactate in the maturation medium. Increasing glucose and lactate decreased (P < or = 0.05) glycolytic activity of oocytes, without affecting (P > 0.05) pyruvate oxidation. In COCs, increasing glucose concentrations tended (P = 0.07) to decrease glycolysis. When metabolic activity was corrected for protein content (pmol/microg protein/3 hr), increasing glucose or lactate concentrations in the medium decreased (P < or = 0.05) pyruvate oxidation in oocytes, but increased (P < or = 0.05) pyruvate oxidation in COCs. Embryonic development (cleavage and blastocyst development, hatching, and cell number) was not affected (P > 0.05) by the glucose and lactate concentrations tested. These results indicate that concentrations of glucose and lactate in the medium have cell type-specific effects on metabolism of oocytes and COCs, but do not affect developmental competence within the range of concentrations tested.  相似文献   

6.
Birth of large calves that developed from in vitro-derived bovine embryos   总被引:2,自引:0,他引:2  
High birth weights were observed in calves that developed from bovine embryos produced by in vitro maturation (IVM) and in vitro fertilization (IVF) procedures. After IVM and IVF, embryos were either co-cultured in vitro with oviductal epithelial cells or transferred into the sheep oviduct for development to the blastocyst stage. Blastocysts were transferred to the reproductive tracts of recipient heifers and cows for development to term. Birth weights and gestation periods were compared between calves that developed from in vitro-derived embryos and calves born after artificial insemination (AI) of cows in the herd from which recipient females were selected. Gestation periods were not different among the groups (P > 0.05), but calves that developed from IVM/IVF-derived embryos co-cultured in vitro were larger at birth than calves born from IVM/IVF-derived embryos that developed into blastocysts in the sheep oviduct and calves born from AI (P < 0.001). Dystocia and calf mortality were associated with large calf size at birth. These data were collected from an experiment designed for other purposes, and confounding variables and small sample size could have influenced the observed differences in birth weights. Nevertheless, the extreme birth weights of some calves suggest that abnormal prenatal growth occurs in some IVM/IVF-derived bovine embryos and that conditions for co-culture to the blastocyst stage may exacerbate the problem.  相似文献   

7.
8.
Two experiments were conducted to assess the effects of environmental temperature and humidity on the quality and developmental capabilities of bovine oocytes. In Experiment 1, Bos taurus (Holstein and crossbred Angus) cows were subjected to 5 weekly sessions of ultrasound-guided follicle aspiration from February 16 through March 23 (cool season) and 5 sessions from May 22 through June 20 (hot season). In Experiment 2, Bos taurus (Holstein) and Bos indicus (Brahman) cows were superstimulated (Super-Ov) during the months of August (hot season) or January (cool season), and each cow was subjected to a single oocyte aspiration session. In each experiment, oocytes were classified as normal or abnormal based on ooplasm morphology and cumulus cell layers. In Experiment 1, oocytes classified as normal were in vitro matured and fertilized (IVM/IVF), and the resulting embryos cultured for 8 d. All oocytes recovered from superstimulated cows in Experiment 2 were matured and fertilized in vitro and the subsequent embryos cultured for 8 d, regardless of their morphological appearance. In Experiment 1, Bos taurus cows produced a higher (P = 0.02) percentage of normal oocytes during the cool season (75.9 +/- 8.0) than during the hot season (41.0 +/- 9.5). The percentage of fertilized oocytes developing to the 2-cell (82.4), 8-cell (65.4) and morula (46.6) stages were also greater (P < or = 0.06) during the cool season than the hot season (45.0, 21.2, 6.0 for 2-cell, 8-cell and morula stages, respectively). In Experiment 2, Bos taurus cows (Holstein) had a lower (P = 0.01) percentage of normal oocytes in the hot season (24.5 vs 80.0) and a lower (P < or = 0.003) percentage of fertilized oocytes developing to the 8-cell, morula and blastocyst stages. No difference (P > or = 0.57) in the percentage of normal oocytes or in embryo development was detected between seasons in Bos indicus (Brahman) cows. In conclusion, high environmental temperature and humidity resulted in a marked decline in the quality of oocytes retrieved from Bos taurus cows and markedly decreased their in vitro developmental capabilities. In contrast, a high percentage of oocytes retrieved from Bos indicus cows exhibited normal morphology and yielded a high proportion of blastocysts, regardless of season.  相似文献   

9.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

10.
Cows fed high-protein diets may have impaired reproductive performance. Although the pathogenesis has not been completely elucidated, it appears that not only the uterus, but also the follicle and oocyte, are affected by excessive plasma urea nitrogen (PUN) concentrations. Thus, the objective was to determine the effects of short-term urea feeding on the competence of bovine oocytes. Forty crossbred heifers (Bos indicus vs Bos taurus) were allocated to two groups, namely CONTROL (maintenance diet) and UREA (maintenance diet supplemented with 75 g of urea/day), following a cross-over design. Heifers received their respective diets for 6 d (without adaptation). On the sixth day, blood samples were harvested both before and 3 h after feeding, and cumulus oocyte complexes (COCs) were collected by ovum pick-up. Although PUN concentrations were higher in UREA than CONTROL heifers (31.31 mg/dL ± 1.13 vs 22.12 mg/dL ± 0.86; mean ± SEM), neither the number of COCs recovered (8.8 ± 1.0 vs 9.2 ± 0.8, UREA vs CONTROL, respectively) nor their quality (based on morphology) differed significantly between groups. Next, oocytes were fertilized and cultured in vitro to assess developmental rates. There was an absence of significant differences between groups for rates of cleavage (Day 3) or blastocyst formation (Days 6, 7 and 9), but the hatched blastocyst rate on Day 11 after fertilization was lower (P < 0.05) in the UREA than the CONTROL groups (64.3 vs 83.5%). Therefore, we inferred that the effects of urea were only manifest later in development. In conclusion, high PUN concentrations decreased oocyte competence in heifers, reinforcing the hypothesis that poor reproductive performance in cows with high PUN was due, at least in part, to a deleterious effect on oocytes.  相似文献   

11.
To assess the developmental potential of nuclear transfer embryos in cattle using mammary gland epithelial (MGE) cells derived from the colostrum, we compared the effectiveness of cloning using those cells and fibroblast cells derived from the ear. The fusion rate of the enucleated oocytes with fibroblast cells (75 +/- 4%) was significantly higher than that with MGE cells (56 +/- 7%, P<0.05). There were no significant differences in the cleavage rate (85 +/- 3% vs. 91+/- 2%) or in the developmental rate to the blastocyst stage (35 +/- 6% vs. 35 +/- 5%) using MGE cells vs. fibroblast cells as donor nuclei (P>0.05). After transfer of blastocysts derived from nuclear transfer embryos produced using MGE cells and fibroblast cells, 13% (4/31) and 16% (6/37) of recipient heifers were pregnant on Day 42 as assessed by ultrasonography, respectively. Two of the 4 and 4 of the 6 recipients of embryos with MGE cell- and fibroblast cell-derived nuclei, respectively, aborted within 150 days of pregnancy. Four live female calves were obtained from MGE cells or fibroblast cells. However, one died from internal hemorrhage of the arteria umbilicalis. The other three calves were normal and healthy. There were no differences in the pregnancy rate or calving rate when using MGE cells vs. fibroblast cells. Microsatellite DNA analyses confirmed that the cloned calves were genetically identical to the donor cows and different from the recipient heifers. We conclude that colostrum-derived MGE cells have the developmental potential to term by nuclear transfer, and the efficiency of development of those cloned embryos was the same as that of embryos obtained using fibroblast cells as donor nuclei, although there was a significant difference in the fusion rate. This method using MGE cells derived from colostrum, which is obtained easily and safely from live adult cows, is more advantageous for cloning with somatic cells.  相似文献   

12.
Although several studies have indicated a paternal effect on bovine embryo development, no conclusive data exist on the effect of in vivo bull fertility on apoptosis. Therefore, it was the main objective of this study to compare the apoptotic cell ratio (ACR) in embryos originating from bulls with different in vivo fertility. However, since it is has been demonstrated before that bulls with different in vivo fertility differ in timing of first cleavage, it was necessary to investigate first the effect of timing of development on apoptosis in vitro in order to get an unbiased insight in the contribution of in vivo bull fertility on apoptosis in bovine blastocysts. In the first experiment, bovine embryos (n = 939) were allocated to different groups according to cleavage rate at 30, 36 and 48 hpi and blastocysts were selected at 7 and 8 dpi. The blastocyst rate at 7 dpi was significantly lower in embryos which had first cleaved at 48 hpi than in embryos from the 30 and 36 hpi group (P < 0.05). The ACR after TUNEL in day 7 blastocyst was significantly lower in the 30 hpi group in comparison with the 36 and 48 hpi group (P < 0.05) and lower in day 7 blastocysts than in day 8 blastocysts. In the second experiment, sperm of eight bulls with different non return rates was used for in vitro bovine embryo production (n = 3820 oocytes). Cleavage rates (30, 36 and 48 hpi) and blastocyst rate (7 dpi) were determined. Only very low negative correlations could be found between in vivo and in vitro bull fertility and ACR did not differ between groups derived from sires with either low or normal fertility (P > 0.05). Further research in serum free conditions is needed to confirm that the lower ACR in early cleaved embryos could be mediated by the cooperative interaction of embryos of good quality cultured in group. In vivo bull fertility could hardly be correlated with in vitro blastocyst yield and could not be correlated with appearance of apoptosis.  相似文献   

13.
Our previous studies have shown that oocytes collected from prepubertal calves lack developmental competence. The overall objective of this study was to assess causes by comparing biochemical and physiologic changes during in vitro maturation of oocytes collected from ovaries of adult cattle at slaughter and from superstimulated calves (<6 mo old) by either laporotomy or ultrasound-guided follicular aspiration. Activity and/or concentrations of maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK), and inositol 1,4,5-trisphosphate receptor (IP(3)R) were determined by measuring phosphorylation of histone H-1 kinase, phosphorylation of myelin basic protein, or Western blotting, respectively, and were compared between oocytes collected from calves and for those collected from cows. The activities of MPF and MAPK and the relative amount of IP(3)R were significantly lower in calf oocytes. The physiologic significance of these observations was determined by assessing the developmental potential of embryos derived by reciprocal transfer of metaphase II (M-II) chromosomes between cow and calf ooplasts and transfer of adult cumulus cells (G0/G1) into cow and calf ooplasts. Procedural controls consisted of transfer of M-II between adult oocytes and parthenogenic activation of adult and calf oocytes. Adult parthenogenically activated oocytes cleaved and developed to blastocysts at a higher rate than did similarly activated calf oocytes (42.1% vs. 3.4%, P < 0.05). Cleavage was also higher in reciprocal M-II transfer embryos containing adult ooplasm (46.2% vs. 12.0%, P < 0.05). Cleavage (66.7% vs. 21.9%, P < 0.05) and development to blastocyst (20.1% vs. 4.8%, P < 0.05) of nuclear transfer embryos reconstructed from adult cumulus cells was higher after transfer to adult ooplasts. Collectively, these results support the hypothesis that lack of developmental competence of calf oocytes is due to their failure or inability to complete ooplasmic maturation.  相似文献   

14.
We examined the effects of the source of recipient oocytes and timing of fusion and activation on the development competence of bovine nuclear transferred (NT) embryos derived from fresh cumulus cells isolated immediately after collection by ovum pickup (OPU). As recipient cytoplasts, we used in vivo-matured oocytes collected from hormone-treated heifers by OPU, or in vitro-matured oocytes from slaughterhouse-derived ovaries. NT embryos were chemically activated immediately (simultaneous fusion and activation, FA) or 2 h (delayed activation, DA) after fusion. When in vitro-matured oocytes were used as recipient cytoplasts, the development rate to the blastocyst stage of NT embryos produced by the DA method (23%) tended to be higher than those by the FA method (15%), but the difference was not significant. NT embryos derived from in vivo-matured cytoplasts have a high blastocyst yield (46%). Pregnancy rate at day 35 did not differ with the timing of fusion and activation (FA vs. DA; 50% vs. 44%) or oocyte source (in vivo- vs. in vitro-matured; 50% vs. 44%). Subsequently, the high fetal losses (88% of pregnancies) were observed with in vitro-matured cytoplasts, whereas no abortions were observed in NT fetuses from in vivo-matured cytoplasts. A total of three embryos derived from fresh cumulus cells developed to term. However, all three cloned calves were stillborn. These results indicate that improvement of development competence after NT is possible by using in vivo-matured oocytes as recipient cytoplasts in bovine NT.  相似文献   

15.
The objective was to explore the use of sexed sperm and OPU-derived oocytes in an IVP system to produce sex-preselected bubaline embryos. Oocytes were recovered from 20 fertile Murrah and Nili-Ravi buffalo cows by repeated (twice weekly) ultrasound-guided transvaginal ovum pick up (OPU), or by aspiration of abbatoir-derived bubaline ovaries, and subjected to IVF, using frozen-thawed sexed or unsexed bubaline semen. On average, 4.6 oocytes were retrieved per buffalo per session (70.9% were Grades A or B). Following IVF with sexed sperm, oocytes derived from OPU had similar developmental competence as those from abattoir-derived ovaries, in terms of cleavage rate (57.6 vs. 50.4%, P=0.357) and blastocyst development rate (16.0 vs. 23.9%, P=0.237). Furthermore, using frozen-thawed sexed versus unsexed semen did not affect rates of cleavage (50.5 vs. 50.9%, P=0.978) or blastocyst development (15.3 vs. 19.1%, P=0.291) after IVF using OPU-derived oocytes. Of the embryos produced in an OPU-IVP system, 9 of 34 sexed fresh embryos (26.5%) and 5 of 43 sexed frozen embryos (11.6%) transferred to recipients established pregnancies, whereas 7 of 26 unsexed fresh embryos (26.9%) and 6 out of 39 unsexed frozen embryos (15.4%) transferred to recipients established pregnancies. Eleven sex-preselected buffalo calves (10 females and one male) and 10 sexed buffalo calves (six females and four males) were born following embryo transfer. In the present study, OPU, sperm sexing technology, IVP, and embryo transfer, were used to produce sex-preselected buffalo calves. This study provided proof of concept for further research and wider field application of these technologies in buffalo.  相似文献   

16.
The capacity of heifer calves of a late sexually maturing Zebu (Bos indicus) genotype to respond to superstimulation with FSH at a young age and in vitro oocyte development were examined. Some calves were treated with a GnRH agonist (deslorelin) or antagonist (cetrorelix) to determine whether altering plasma concentrations of LH would influence follicular responses to FSH and oocyte developmental competency. Brahman calves (3-mo-old; 140 +/- 3 kg) were randomly assigned to 3 groups: control (n = 10); deslorelin treatment from Day -8 to 3 (n = 10); and cetrorelix treatment from Day -3 to 2 (n = 10). All calves were stimulated with FSH from Day 0 to 2, and were ovariectomized on Day 3 to determine follicular responses to FSH and to recover oocytes for in vitro procedures. Before treatment with FSH, heifers receiving deslorelin had greater (P < 0.001) plasma LH (0.30 +/- 0.01 ng/ml) than control heifers (0.17 +/- 0.02 ng/ml), while plasma LH was reduced (P < 0.05) in heifers treated with cetrorelix (0.13 +/- 0.01 ng/ml). Control heifers had a surge release of LH during treatment with FSH, but this did not occur in heifers treated with deslorelin or cetrorelix. All heifers had large numbers of follicles > or = 2 mm (approximately 60 follicles) after superstimulation with FSH, and there were no differences (P > 0.10) between groups. Total numbers of oocytes recovered and cultured also did not differ (P > 0.05) for control heifers and heifers treated with deslorelin or cetrorelix. Fertilization and cleavage rates were similar for the 3 groups, and developmental rates to blastocysts were also similar. Zebu heifers respond well to superstimulation with FSH at a young age, and their oocytes are developmentally competent.  相似文献   

17.
The aim of the study was to determine whether the selection of immature oocytes by a combination of cumulus-oocyte-complexes (COCs) morphology and staining with brilliant cresyl blue (BCB) would be helpful in selecting developmentally competent oocytes, and thereby increase the efficiency of blastocyst production from ovarian oocytes of FSH-primed, adult goats. In a second experiment the interaction between oocyte quality and semen donor was assessed. In a third experiment the usefulness of Vero cells for co-culture with goat embryos was investigated. In the pool of morphologically normal COCs recovered from ovaries following slicing (21.9+/-11.0), the mean rate of COCs classified as BCB+ was 85.6%, and the BCB- was approximately 11%. Oocytes classified as grade 1 and BCB+ exhibited the highest developmental competence (P<0.001) after in vitro maturation and fertilization compared with oocytes of grade 1 BCB- and grade 2 BCB+ or BCB-. There were no significant differences in developmental competence in grade 2 oocytes, regardless of BCB coloration. No significant differences in embryo cleavage and blastocyst formation rates among three bucks were observed when morphologically normal, BCB+ oocytes were used. For all tested bucks, differences in embryo production efficiency were related only to the oocyte quality. Similar blastocyst rates were developed from embryos co-cultured with goat oviduct epithelial cells (34.3%) and with Vero cells (33.3%). These results show that the most important criterion for selection of COCs before maturation is the visual assessment of morphological features. Staining with BCB of COCs recovered from adult goats does not enhance efficiency of selection of developmentally competent oocytes for IVF.  相似文献   

18.
Oocyte-secreted factors enhance oocyte developmental competence   总被引:6,自引:0,他引:6  
The capacity of fully grown oocytes to regulate their own microenvironment by paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) may in turn contribute to oocyte developmental competence. Here, we investigated if OSFs have a direct influence on oocyte developmental competence during in vitro maturation (IVM). Bovine cumulus-oocyte complexes (COCs) were aspirated from abattoir-derived ovaries and matured in serum-free medium. COCs were either co-cultured with denuded oocytes (DOs) or treated with specific OSFs: recombinant bone morphogenetic protein 15 (BMP15) and/or growth differentiation factor 9 (GDF9). Following maturation, embryos were fertilized and cultured in vitro and blastocyst development and cell number were assessed on day 8. Co-culturing intact COCs with DOs did not affect cleavage rate, but increased (P<0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination from 39% to 51%. OSFs also altered blastocyst cell allocation as co-culture of COCs with DOs significantly increased total and trophectoderm cell numbers, compared to control COCs. BMP15 alone, GDF9 alone or the two combined all (P<0.05) increased the proportion of oocytes that reached the blastocyst stage post-insemination from 41% (controls) to 58%, 50% and 55%, respectively. These results were further verified in neutralization experiments of the exogenous growth factors and of the native OSFs. Follistatin and the kinase inhibitor SB-431542, which antagonize BMP15 and GDF9, respectively, neutralized the stimulatory effects of the exogenous growth factors and impaired the developmental competence of control COCs. These results demonstrate that OSFs, and particularly BMP15 and GDF9, enhance oocyte developmental competence and provide evidence that OSF regulation of the COC microenvironment is an important determinant of oocyte developmental programming.  相似文献   

19.
The developmental potential of oocytes from prepubertal cattle is decreased, compared with those from their adult counterparts. The aim of the present study was to improve the developmental capacity of oocytes from prepubertal cattle by either systemic application of recombinant bovine somatotropin (rbST) or intraovarian injection of insulin-like growth factor-I (IGF-I). Blastocyst yields and the mRNA expression pattern (relative abundance, RA) of three putative marker genes (i.e., glucose transporter-1, Glut-1; eukaryotic translation initiation factor-1A, eIF1A, and upstream binding factor, UBF) were selected as criteria to determine the success of the treatments. At 6-7 mo of age, 30 healthy Holstein calves were randomly assigned to three experimental groups. The first group served as control and received an intraovarian injection of 0.6 ml acetic acid. The second group received a single s.c. injection of 500 mg of rbST. The third group received an intraovarian injection of 6 microg recombinant human IGF-I. During the following 2 wk, follicles were aspirated four times via transvaginal ultrasound-guided technology. All animals were i.m. injected with 60 mg FSH 48 h prior to each aspiration. The treatments were repeated with the same animals at 9-10, 11-12, and 14-15 mo of age. For comparison, five adult cows were each i.m. injected with 100 mg FSH and underwent oocyte retrieval. The proportion of oocytes considered to be developmentally competent was higher in cows than calves (65% vs. 58%, 50%, 52%) for the control, rbST, and IGF-I groups, respectively. The rate of blastocysts was similar in IGF-I-treated calves and cows (28% and 25%) and was higher (P 相似文献   

20.
We evaluated: (1) cleavage rate after IVF or intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification (experiment 1); and (2) fetal development after transfer of resultant ICSI-derived embryos into recipients (experiment 2). In vivo-matured cumulus-oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment. In vitro-matured oocytes were obtained by mincing ovaries (from local veterinary clinics) and placing COCs into maturation medium for 24 h. Mature oocytes were denuded and cryopreserved in a vitrification solution of 15% DMSO, 15% ethylene glycol, and 18% sucrose. In experiment 1, for both in vivo- and in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes and after ICSI of vitrified oocytes were not different (P > 0.05). After vitrification, blastocyst development occurred only in IVF-derived, in vitro-matured oocytes. In experiment 2, 18 presumptive zygotes and four two-cell embryos derived by ICSI of vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo- and 12 in vitro-matured oocytes were transferred by laparoscopy into the oviducts of two recipients, respectively. On Day 21, there were three fetuses in one recipient and one fetus in the other. On Days 63 and 66 of gestation, four live kittens were born. In vivo viability of zygotes and/or embryos produced via ICSI of vitrified oocytes was established by birth of live kittens after transfer to recipients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号