首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A new protocol for superovulating cattle which allows for control of the timing of ovulation after superstimulation with FSH was developed. The preovulatory LH surge was blocked with the GnRH agonist deslorelin, and ovulation was induced by injection of LH. In Experiment 1, heifers (3-yr-old) were assigned to a control group (Group 1A, n = 4) or a group with deslorelin implants (Group 1B, n = 5). On Day -7, heifers in Group 1A received a progestagen CIDR-B((R))device, while heifers in Group 1B received a CIDR-B((R))device + deslorelin implants. Both groups were superstimulated with twice daily injections of FSH (Folltropin((R))-V): Day 0, 40 mg (80 mg total dose on Day 0); Day 1, 30 mg; Day 2, 20 mg; Day 3, 10 mg. On Day 2, heifers were given PGF (a.m.) and CIDR-B((R)) devices were removed (p.m.). Three heifers in Group 1A had a LH surge and ovulated, whereas neither of these events occurred in Group 1B (with deslorelin implants) heifers. In Experiment 2, heifers (3-yr-old) were assigned to 1 of 4 equal groups (n = 6). On Day -7, heifers in Group 2A received a norgestomet implant, while heifers in Groups 2B, 2C and 2D received norgestomet + deslorelin implants. Heifers were superstimulated with FSH starting on Day 0 as in Experiment 1. On Day 2, heifers were given PGF (a.m.) and norgestomet implants were removed (p.m.). Heifers in Groups 2B to 2D were given 25 mg LH (Lutropin((R))): Group 2B, Day 4 (a.m.); Group 2C, Day 4 (p.m.); Group 2D, Day 5 (a.m.). Heifers in Group 2A were inseminated at estrus and 12 and 24 h later, while heifers in Groups 2B to 2D were inseminated at the time of respective LH injection and 12 and 24 h later. Injection of LH induced ovulation in heifers in Groups 2B to 2D. Heifers in Group 2C had similar total ova and embryos (15.2 +/- 1.4) as heifers in Group 2A (11.0 +/- 2.8) but greater (P < 0.05) numbers than heifers in Group 2B (7.0 +/- 2.3) and Group 2D (6.3 +/- 2.0). The number of transferable embryos was similar for heifers in Group 2A (5.8 +/- 1.8) and Group 2C (7.3 +/- 2.1) but lower (P < 0.05) for heifers in Group 2B (1.2 +/- 0.8) and Group 2D (1.3 +/- 1.0). The new GnRH agonist-LH protocol does not require observation of estrus, and induces ovulation in superstimulated heifers that would not have an endogenous LH surge.  相似文献   

2.
The aim of this study was to determine, for goats, the effects of daily doses of GnRH antagonist on ovarian endocrine and follicular function. Ten does were given 45 mg FGA intravaginal sponges and then five were treated with daily injections of 0.5mg of the GnRH antagonist Teverelix for 11 days from 2 days after the day of sponge insertion, while five does acted as controls. Pituitary activity was monitored by measuring plasma FSH and LH daily from 2 days before the first GnRH injection to Day 12. Follicular activity was determined by ultrasonographic monitoring and by assessing plasma inhibin A levels during the same period. In treated does, the FSH levels decreased linearly (0.8 +/- 0.1 ng/ml to 0.5 +/- 0.1 ng/ml, P < 0.01) and remained lower than the mean concentration in control goats (0.8 +/- 0.1 ng/ml, P < 0.005). LH levels were also lower during the period of antagonist treatment (0.6 +/- 0.2 ng/ml versus 0.4 +/- 0.1 ng/ml, P < 0.0005). During GnRH antagonist treatment, there was a significant decrease in the number of large follicles (> or = 6 mm) from Day 3 of treatment (1.2 +/- 0.6, P < 0.0001), with no large follicles from Day 9. The number of medium follicles (4-5 mm in size) also decrease during the period of treatment (4.2 +/- 0.7 to 1.0 +/- 0.6, P < 0.0001), leading to a significant decrease in inhibin A levels when compared to the control (143.7 +/- 31.3 pg/ml versus 65.2 +/- 19.1 pg/ml, P < 0.00005). In contrast, the number of small follicles (2-3 mm) increased in treated goats from Day 4 of treatment (9.6 +/- 2.9 to 20.2 +/- 6.3, P < 0.005). Such data indicate that GnRH antagonist reduced plasma levels of FSH and LH with suppression of the growth of large dominant ovarian follicles and a two-fold increase in number of smaller follicles. The results confirm that GnRH antagonist treatment can be used in goats to control gonadotrophin secretion and ovarian follicle growth in superovulatory regimes.  相似文献   

3.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

4.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

5.
The objective of this study was to determine the relationships between follicle stimulating hormone, (FSH), estradiol (E(2)), and progesterone (P(4)) concentrations in peripheral blood samples and the follicular dynamics prior to and during superovulation in heifers pretreated with FSH-P (10 mg, i.m.) (FSH-P-primed; n=9) or not (saline-primed; n=9) on Day 3 (Day 0 = estrus) of the estrous cycle. On Day 10, all heifers were superovulated with FSH-P (27.7 mg i.m.) in declining dosages over 5 days. Prior to and during superovulation, blood samples were collected one to five times daily, and the follicular dynamics were monitored daily by ultrasonography. Prior to superovulation, profiles of P(4) and E(2) did not differ (P>1) between the saline- and FSH-P-primed heifers. The FSH concentrations in saline-primed heifers decreased from 0.43 +/- 0.05 ng/ml to 0.30 +/- 0.04 ng/ml between Days 3 and 7 and then increased progressively to 0.59 +/- 0.04 ng/ml on Day 10. In contrast (P<0.002), FSH concentrations in the FSH-P-primed heifers remained constant between Days 3 and 10 and averaged 0.41 +/- 0.03 ng/ml. Higher increases in E(2) during superovulation (maximum values, 100 vs 46 pg/ml) and in P(4) after superovulation (maximum values, 39 vs 22 ng/ml) in the saline-than in the FSH-P-primed heifers reflected the greater increase in the number of follicles (>10 mm) and in the number of corpora lutea (CL) in the saline-primed heifers. Prior to the preovulatory luteinizing hormone (LH) peak during superovulation, there was a parallel (P>0.1) decrease in FSH concentrations in the saline- and FSH-P-primed groups. Within heifers partial correlations indicated that E(2) was correlated positively with the number of follicles (>/= 7 mm) and the size of the largest follicle during superovulation (r=0.54 to 0.81; P<0.01). Negative correlations were detected (P<0.01) between FSH and the number of follicles >/=7 mm prior to (r=-0.26) and during superovulation (r=-0.37). The results cofirm earlier reports indicating that priming with FSH-P decreases the superovulatory response in cattle. Interrelationships of hormonal and ovarian responses support the concept that the presence of large dominant follicles prior to superovulation limits the superovulatory response.  相似文献   

6.
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V, 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean +/- SEM) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8+/-1.8, 6.1+/-1.3, 51.5), P48 (12.6+/-1.9, 7.1+/-1.0, 52.3), P60 (10.5+/-1.6, 5.7+/-1.3, 40.0) and D60 (10.3+/-1.7, 5.0+/-1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol.  相似文献   

7.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

8.
The requirement for pulsatile LH and the LH surge for the acquisition of oocyte fertilizing potential and embryo developmental competency was examined in Zebu heifers. Follicular growth was superstimulated using the GnRH agonist-LH protocol in which pulsatile LH and the preovulatory LH surge are blocked. In experiment 1, heifers were assigned on Day 7 of the estrous cycle to receive: group 1A (n = 5), 1.5 mg norgestomet (NOR) implant; group 1B (n = 5), GnRH agonist implant. Follicular growth was superstimulated with 2x daily injections of FSH from Day 10 (a.m.) to Day 13 (p.m.), with PGF2alpha injection on Day 12 (a.m.). Heifers were ovariectomized on Day 15 (a.m.) and oocytes were placed immediately into fertilization, without 24 h maturation. Respective cleavage and blastocyst development rates were: group 1A, 0/64 oocytes (0%) and 0/64 (0%); group 1B, 34/70 oocytes (48.6%) and 2/70 (2.9%). In experiment 2, heifers were assigned on Day 7 of the estrous cycle to receive: group 2A (n = 10), 1.5 mg NOR implant; group 2B (n = 10), GnRH agonist implant; group 2C (n = 10), GnRH agonist implant. Follicular growth was superstimulated as in experiment 1 above. Heifers in groups 2A and 2B received an injection of 25 mg LH on Day 14 (p.m.) and all heifers were ovariectomized on Day 15 (a.m.); oocytes were placed immediately into fertilization without 24 h maturation. Cleavage rates were similar for heifers in group 2A (84/175 oocytes, 48.0%), group 2B (61/112 oocytes, 54.5%) and group 2C (69/163, 42.3%). Blastocyst development rates were similar for heifers in group 2A (22/175 oocytes, 12.6%) and group 2B (25/112 oocytes, 22.3%) and lower (P < 0.05) for heifers in group 2C (9/163 oocytes, 5.5%). Oocytes obtained from heifers treated with GnRH agonist, without injection of exogenous LH, underwent cleavage indicating that neither pulsatile LH nor the preovulatory LH surge are obligatory for nuclear maturation in cattle oocytes. Exposure to a surge-like increase in plasma LH increased embryo developmental competency indicating that the preovulatory LH surge promotes cytoplasmic maturation. The findings have important implications for controlling the in vivo maturation of oocytes before in vitro procedures including nuclear transfer.  相似文献   

9.
The synchrony of ovulation was examined in superstimulated heifers that had a downregulated pituitary gland and which were induced to ovulate by injection of exogenous LH. The pituitary was downregulated and desensitized to GnRH by treatment with the GnRH agonist deslorelin. Nulliparous heifers (3.5 yr old) at random stages of the estrous cycle were assigned to 1 of 3 groups, and on Day -7 received the following treatments: Group 1 (control, n = 8), 1 norgestomet ear implant; Group 2 (GnRH agonist, n = 8); Group 3 (GnRH agonist-LH protocol, n = 8), 2 deslorelin ear implants. Ovarian follicle growth in all heifers was superstimulated with twice-daily intramuscular injections of FSH (Folltropin-V): Day O, 40 mg (80 mg total dose); Day 1, 30 mg; Day 2; 20 mg; Day 3, 10 mg. On Day 2, all heifers were given a luteolytic dose of PGF (7 A.M.), Norgestomet implants were removed from heifers in Group 1 (6 P.M.). Heifers in Group 3 were given an injection of 25 mg, i.m. porcine LH (Lutropin) on Day 4 (4 P.M.). Ovarian follicle status was monitored at 8-h intervals from Day 3 (8 A.M.) to Day 6 (4 P.M.) using an Aloka Echo Camera and 7.5 MHz transducer. Heifers in Groups 2 and 3 exhibited estrus earlier (P < 0.05) than heifers in Group 1. Heifers in Group 2 did not have a preovulatory LH surge and they did not ovulate. Individual control heifers in Group 1 ovulated between 12 A.M. on Day 5 and 8 A.M. on Day 6. Heifers with deslorelin implants and injected with LH in Group 3 ovulated between 4 P.M. on Day 5 and 8 A.M. on Day 6. It was confirmed that superstimulated heifers with GnRH agonist implants can be induced to ovulate with LH. It was also demonstrated that ovulation is closely synchronized after injection of LH. Thus, a single, fixed-time insemination schedule could be used in a GnRH agonist-LH superovulation protocol, with significant practical and economic advantages for superovulation and embryo transfer programs.  相似文献   

10.
Groups of heifer calves received a primary immunization against androstenedione (Group A; N = 11) or oestradiol-17 beta (Group E; N = 10) at 3 months of age and booster injections on 5 occasions at 2- to 3-month intervals. Controls (Group C, N = 11) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group A (1126 +/- 261; reciprocal of titre) and Group E (10,357 +/- 4067) heifers. In Groups A and E there was a general decline in the respective peak antibody titres after successive booster injections. From 3 to 9 months of age mean plasma concentrations of LH were higher (P less than 0.05) in Group E heifers (0.89 +/- 0.08 ng/ml) than in Group C (0.46 +/- 0.03 ng/ml) and Group A (0.59 +/- 0.05 ng/ml) heifers which did not differ from one another. There were no differences between groups in plasma FSH concentrations. At 10 months of age the LH response to exogenous LHRH was of higher (P less than 0.05) amplitude for heifers in Group E (2.59 +/- 0.56 ng/ml) than for those in Groups C (0.61 +/- 0.07 ng/ml) and A (1.04 +/- 0.22 ng/ml). Elevated plasma progesterone concentrations at 5 months of age were shown by 2 heifers in Group C, 10 in Group A, and 6 in Group E. From 8 to 14 months of age a consistently higher proportion of Group A heifers exhibited elevated progesterone compared with Group C and Group E heifers. After ovarian synchronization and booster injection at 15 months of age a corpus luteum was present in 2 heifers in Group C, 7 in Group A and none in Group E. The ovaries of Group A heifers were different from those of Groups C and E and were characterized by greater numbers of 2-4 mm follicles. It is concluded that active immunization against gonadal steroids influences both LH secretion and ovarian function in prepubertal heifers. Early increases in ovarian activity in androstenedione-immunized heifers are maintained after puberty and may therefore confer some lifetime reproductive advantages.  相似文献   

11.
A transient increase in gonadotropin secretion between 6 and 20 weeks of age is critical for the onset of puberty in bull calves. To try and hasten the onset of puberty, bull calves were treated (s.c.) with 3 mg of bLH (n = 6) or 4 mg of bFSH (n = 6) once every 2 days, from 4 to 8 weeks after birth; control calves received saline (n = 6). At 4 and 8 weeks of age, mean LH concentrations were higher (P < 0.05) in bLH-treated (2.3 +/- 0.04 ng/ml and 1.20 +/- 0.04 ng/ml) as compared to control calves (0.50 +/- 0.1 ng/ml and 0.70 +/- 0.10 ng/ml). Mean serum FSH concentrations at 4 and 8 weeks of age, were higher (P < 0.05) in bFSH-treated (1.60 +/- 0.20 ng/ml and 1.10 +/- 0.2 ng/ml) as compared to control calves (0.38 +/- 0.07 ng/ml and 0.35 +/- 0.07 ng/ml). The age at which scrotal circumference (SC) first reached > or = 28 cm, occurred earlier (P < 0.05) in bFSH-treated calves as compared to saline-treated calves (39.3 +/- 1.3 and 44.8 +/- 1.3 weeks of age, respectively). Based on testicular histology at 56 weeks of age, treatment with bFSH resulted in greater (P < 0.05) numbers of Sertoli cells (5 +/- 0.2, 6 +/- 0.3 and 5 +/- 0.3 in bLH-, bFSH- and saline-treated calves, respectively); elongated spermatids (42 +/- 2, 57 +/- 8 and 38 +/- 5 in bLH-, bFSH- and saline-treated calves, respectively) and spermatocytes (31 +/- 3, 38 +/- 3 and 29 +/- 2 in bLH-, bFSH- and saline-treated calves, respectively) per seminiferous tubule. We concluded that treatment of bull calves with bFSH from 4 to 8 weeks of age increased testicular growth (SC); hastened onset of puberty (SC > or = 28 cm); and enhanced spermatogenesis.  相似文献   

12.
The objective in this study was to investigate the effect of repeated oocyte collection by transvaginal, ultrasound-guidance, oocyte pick-up (OPU) in nine, prepubertal (8-12 months), swamp buffaloes. Animals were treated with FSH for 3 days and received GnRH on the third day, 24 h before OPU. This session was repeated on five occasions at 2 weekly intervals. Over the five sessions of hormone treatment followed by OPU, 39/42 (92.9%) animals responded and had 6.6+/-3.6 follicles with a follicular diameter of 5.0+/-2.0 mm. The oocyte recovery rate was 5.4+/-3.7 and averaged 82.8% oocytes, except for session 4, when oocyte recovery was around 75.0%. Most oocytes were denuded (39.5%), whilst 28.8% had a substantial cumulus mass. There were no differences in the ovarian responses and the recovery rates between the collections. It was concluded that five repeat cycles of FSH and OPU did not influence the follicular response to superstimulation or the number of oocytes recovered from prepubertal, buffalo calves.  相似文献   

13.
This study investigated the effects of swainsonine (a locoweed toxin) on bovine preplacentation embryo development using in vitro procedures. We examined and confirmed the viability and developmental potential of swainsonine-treated embryos by transfer to synchronized recipient heifers. Oocytes (n = 6338) were aspirated from ovaries collected from the abattoir and subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). Swainsonine was added to IVM, IVF, IVC media spatially and IVM/IVF/IVC continuously, at 0 ng/ml (TRTI, control), 200 ng/ml (TRT2), 400 ng/ml (TRT3), and 800 ng/ml (TRT4). Embryo development was evaluated with respect to oocyte cleavage rate and the rates of morula and blastocyst formation. There was no difference (P > 0.05) among treatments. The average number of nuclei per blastocyst at Day 7.5 of culture (Day 0 = IVF) was 85.9 +/- 4.3 (n = 47) and 89.3 +/- 4.4 (n = 44) for swainsonine-treated embryos (800 ng/ml) and control embryos, respectively. Pregnancy rate as determined by ultrasonography on day 35 to 40 post embryo transfer was 43.8% and 38.3% for swainsonine-treated (800 ng/ml) and control embryos, respectively. Nine (9.4%) healthy calves were delivered from heifers receiving swainsonine-exposed and nine (9.6%) from control embryos. No difference (P > 0.05) was detected in number of calves developing from TRT and control embryos. We conclude that swainsonine does not have an adverse effect on the development and viability of preplacentation bovine embryos.  相似文献   

14.
Twenty-two estrous cyclic, 2-yr-old Brahman heifers were randomly assigned to receive either estrus synchronization with Syncro-Mate-B((R)) (SMB; 11) or no treatment (Control; 11). Blood samples were collected via tail vessel puncture at onset of estrus and daily thereafter until Day 11 after estrus. Blood samples were also collected from five SMB and five Control heifers at 0, 4, 8 and 12 h after the onset of estrus. All samples were processed to yield serum and stored at -20 degrees C until radioimmunoassay. Heifers were inseminated by one technician using semen from a single ejaculate of a Brahman bull 12 h after the onset of estrus. All SMB heifers exhibited estrus within 72 h of implant removal. All heifers had corpora lutea (CL) detected by rectal examination 8 to 12 d following estrus. Serum luteinizing hormone (LH) was not affected by treatment, time (4 - h intervals) or an interaction of treatment by time (P > 0.10). Independent analysis with h indicated that at h 12, SMB (2.2 +/- 0.06 ng/ml) had lower LH than did control heifers (8.9 +/- 2.1 ng/ml). Serum progesterone increased from Day 1 through Day 12 in all heifers, which is indicative of functional CL. Serum progesterone was affected by treatment (P < 0.0001) and time (d intervals; P < 0.10). Progesterone elevation was lower (P < 0.05) and area under the progesterone curve was lower (P < 0.03) in SMB (5.6 +/- 0.5 ng/ml, 32.0 +/- 4.5 units, respectively) when compared with control heifers (7.0 +/- 4 ng/ml, 43.7 +/- 2.4 units, respectively). Conception rate was lower (P < 0.01) in SMB heifers (2 of 11) than in control heifers (8 of 11). The lowered conception rate in SMB treated Brahman heifers may be due to altered timing of LH release following estrus, resulting in an altered time of ovulation.  相似文献   

15.
Two experiments were designed to artificially alter the follicular wave pattern in calves to determine if the mechanisms controlling the well-ordered pattern of follicular growth in adults are extant in prepubertal animals as well. Experiment 1 was designed to test the hypothesis that follicle ablation in a random group of calves will induce synchronous emergence of a new follicular wave which is not different from a spontaneous wave. Experiment 2 was designed to test the hypothesis that ovarian superstimulatory response in calves is enhanced when treatment is initiated before rather than after the time of selection of the dominant follicle. In Experiment 1, 6-month-old calves were assigned randomly to an ablation group (n = 10) and a control group (no ablation, n = 10). Follicle ablation was accomplished by transvaginal ultrasound-guided needle aspiration of all follicles > or = 4 mm in diameter. Blood samples were taken and ovarian changes were monitored daily. A rise (P < 0.01) in mean plasma FSH concentration was detected 24 h after follicle ablation (1.51 ng/ml in the ablation group and 0.93 ng/ml in the control group). Wave emergence was detected earlier (P < 0.01) and with less variation (P < 0.0001) in the ablation group than the control group (1.2 +/- 0.1 vs 4.0 +/- 0.7 d). Characteristics of the induced wave were not different from those of the spontaneous wave. In Experiment 2, 7-month-old calves were assigned randomly to a pre-selection group in which superstimulation treatment was initiated at the time of wave emergence (1 d after follicle ablation, n = 11), or to a post-selection group in which superstimulation treatment was initiated after selection of a dominant follicle (4 d after follicle ablation, n = 11). Superstimulation treatment consisted of 30 mg of FSH im twice daily for 3 d. Ultrasound-guided transvaginal follicle ablation was used to synchronize follicle wave emergence at the outset of the experiment. The mean diameter of the largest follicle at the start of superstimulation treatment was 3.2 versus 8.5 mm in the pre- and post-selection groups, respectively (P < 0.001). The day after the last treatment, the number of follicles > or = 3 mm in diameter was greater (P < 0.002) in the pre-selection group than in the post-selection group (19.3 +/- 1.7 versus 11.3 +/- 1.3). In summary, ultrasound-guided follicle ablation resulted in synchronous wave emergence in a random group of calves, and superstimulation treatment initiated at the time of wave emergence (pre-selection group) resulted in the growth of more follicles than treatment initiated later (post-selection group). Mechanisms involved in the control of follicle recruitment, selection, and suppression are extant in calves, similar to those found in adults.  相似文献   

16.
Preantral follicles of cyclic hamsters were isolated on proestrus, estrus and diestrus I, incubated for 3 h in 1 ml TC-199 containing 1 microgram ovine luteinizing hormone (LH) (NIH-S22), and the concentrations of progesterone (P), androstenedione (A) and estradiol (E2) determined by radioimmunoassay. At 0900-1000 h on proestrus (pre-LH surge) preantral follicles produced 2.4 +/- 0.3 ng A/follicle per 3 h, less than 100 pg E2/follicle and less than 250 pg P/follicle. At the peak of the LH surge (1500-1600 h) preantral follicles produced 1.8 +/- 0.2 ng P and 1.9 +/- 0.1 A and less than 100 pg E2/follicle. After the LH surge (1900-2000 h proestrus and 0900-1000 h estrus) preantral follicles were unable to produce A and E2 but produced 4.0 +/- 1.0 and 5.0 +/- 1.1 ng P/follicle, respectively. By 1500-1600 h estrus, the follicles produced 8.1 +/- 3.1 ng P/follicle but synthesized A (1.6 +/- 0.2 ng/follicle) and E2 (362 +/- 98 pg/follicle). On diestrus 1 (0900-1000 h), the large preantral-early antral follicles produced 1.9 +/- 0.3 ng A, 2.4 +/- 0.4 ng E2 and 0.7 +/- 0.2 ng P/follicle. Thus, there was a shift in steroidogenesis by preantral follicles from A to P coincident with the LH surge; then, a shift from P to A to E2 after the LH surge. The LH/follicle-stimulating hormone (FSH) surges were blocked by administration of 6.5 mg phenobarbital (PB)/100 g BW at 1300 h proestrus. On Day 1 of delay (0900-1000 h) these follicles produced large quantities of A (2.2 +/- 0.2 ng/follicle) and small amounts of E2 (273 +/- 27 pg/follicle) but not P (less than 250 pg/follicle).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Immature female rats were infused s.c. continuously over a 60-h period with a partially purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH activity 4.2 x NIH-FSH-S1 and luteinizing hormone (LH) activity 0.022 x NIH-LH-S1. High rates of superovulation were observed in rats receiving 1 U FSH/day, with 69 +/- 11 oocytes/rat recovered as cumulus-enclosed oocytes from oviducts on Day 1 (equivalent to the day of estrus). Addition of LH to the FSH, at dosages equivalent to 2.5-100 micrograms/day NIH-LH-S1 equivalents (2.5-100 mU) resulted in a dose-related inhibition of superovulation, reaching a nadir of 15 +/- 7 oocytes recovered from rats receiving 50 mU LH/day together with 1 U FSH/day. At the two highest LH doses, 50 and 100 mU/day, ovulation was advanced so that 12 +/- 3 and 15 +/- 4 oocytes, respectively, were recovered from oviducts of these rats flushed on the morning of Day 0, compared to none in rats infused with FSH alone. Ovarian steroid concentrations (ng/mg) observed on the morning of Day 0 in rats infused with FSH alone were progesterone, 0.50 +/- 0.13; testosterone, 0.16 +/- 0.08; androstenedione, 0.06; and estradiol, 0.23 +/- 0.05. On the morning of Day 1, ovarian progesterone concentrations in rats infused with FSH alone had risen to 3.30 +/- 0.33 ng/mg, whereas concentrations of testosterone, androstenedione, and estradiol, had fallen to essentially undetectable levels. Addition of LH to the FSH infusion resulted in dose-related increases, on Day 0, of all four steroids up to a dosage of 25 mU LH/day. At higher LH dosages, Day 0 ovarian concentrations of androgens and estradiol fell markedly, while progesterone concentrations continued to increase. Histological examination of ovaries revealed increases in the extent of luteinization of granulosa cells in follicles with retained oocytes on both Days 0 and 1 in rats infused with 25 and 50 mU LH/day together with 1 U FSH/day, compared to those observed in rats receiving FSH alone. These findings indicate that the elevated progesterone levels on Day 0 and inhibition of ovulation observed at these LH doses were due to premature luteinization of follicles, thus preventing ovulation. At lower LH doses, no sign (based on histologic or steroidogenic criteria) of premature luteinization was evident, suggesting that the decreased superovulation in these rats was due to decreased follicular maturation and/or increased atresia rather than to luteinization of follicles without ovulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
This study examined the effects of altered serum FSH concentration on subsequent ovarian response to superovulation. Synchronized heifers were assigned randomly on Day 1 of the cycle (estrus = Day 0) to three pretreatment groups that consisted of 6-d of saline (7ml, s.c., b.i.d.; Group I), FSH-P (0.5 mg, i.m., b.i.d.; Group II) or charcoal-extracted bovine follicular fluid (BFF; 7 ml, s.c., b.i.d.; Group III) injections. Superovulation was initiated on Day 7 and consisted of FSH-P in decreasing dosages over 4 d (4,3,2,1 mg; i.m., b.i.d.), with cloprostenol (500 mug) on the morning of the third day. A second replicate with 14 heifers was conducted using the same protocol but twice the pretreatment dosage of FSH-P (1 mg) and BFF (14 ml). Endogenous plasma FSH decreased during BFF and FSH-P pretreatments compared to controls (P < 0.02). Endogenous FSH concentrations in both primed groups (II and III) were similar to control values (Group I) 12 h after the start of superovulation. Basal LH concentrations were not different between pretreatment groups. The interval from cloprostenol treatment to the preovulatory LH surge in Group III was 21.3 and 23.9 h longer (P < 0.0001) than it was in Groups I and II. The postovulation progesterone rise was delayed in Group III. The number of corpora lutea (CL) was lowest in the BFF-primed group (4.2 +/- 0.8) compared with the FSH-primed (7.4 +/- 1.3) and the control (12.0 +/- 1.8; P < 0.003) groups. In the FSH-primed group (0.68 +/- 0.06 cm(3)), CL volumes were larger than in the control group (0.45 +/- 0.03 cm(3)), whereas in the BFF-primed group (0.27 +/- 0.02 cm(3)) CL volumes were smaller compared with the control group (P < 0.0001). Mean FSH concentrations for 48 h preceding superovulation and the number of CL per cow were positively correlated (r = 0.55; P < 0.004; n = 26). We concluded that both FSH-P and BFF pretreatments decreased the superovulatory response of heifers to FSH-P. The mechanism for this would appear to be associated with reduced endogenous FSH prior to the start of superovulation.  相似文献   

19.
Superstimulation in donor cows increases the number of cumulus-oocyte complexes (COC), but when compared to in vivo maturation, in vitro maturation results in only half as many blastocysts after prolonged in vitro culture. The objective of this study was to establish a superstimulation protocol that would produce a maximal number of competent COC for standard in vitro embryo production. During experiment 1, eight cyclic Holstein heifers were superstimulated with four doses of FSH. Half the heifers received an injection of LH 6 h before ovum pick-up (OPU). The COC were collected following OPU either 33 or 48 h following the last FSH injection (coasting period). During experiment 2, six cyclic Holstein heifers were superstimulated with six doses of FSH, and in half the heifers, LH was administered 6 h before OPU. The COC were collected following ultrasound-guided transvaginal aspiration of both ovaries 48 h after the last FSH injection (coasting period). The COC originating from follicles with a diameter of 5 mm or more (n = 180 for experiment 1 and 57 for experiment 2) were subjected to standard in vitro maturation, fertilization, and development. When animals were administered four doses of FSH, 48 h of coasting resulted in significantly more 5- to 10-mm follicles (P < 0.01) than 33 h of coasting. If a 33-h coasting period was used, administration of LH 6 h before OPU resulted in a significant increase in both percentage of blastocysts and embryo production rate at Days 7 and 8 (P < or = 0.05) of in vitro culture. If a 48-h coasting period was used, LH injection did not affect the rates of blastocyst production. When donors were administered six doses of FSH with a 48-h coasting period, the highest results, although not significant (P < 0.08), were obtained when animals received LH 6 h before OPU, with 80% +/- 9% (mean +/- SEM) blastocysts and 0.8 +/- 0.09 embryo produced per COC retrieved per heifer at Day 8 of culture. Never has in vitro technology been so close to producing 100% developmentally competent COC.  相似文献   

20.
The effects of frequency of follicular aspiration and treatment of donor cattle with FSH on in vivo oocyte recovery and in vitro embryo production were studied. Simmental heifers (n = 24) formed 8 replicates of 3 treatments in which oocyte donors were aspirated 1) once a week, 2) twice a week, or 3) once a week following treatment with FSH for 3 d prior to aspiration. Oocytes were graded, washed, matured for 20 to 24 h and then inseminated with frozen/thawed semen from a single sire, followed by co-culture on granulosa cell layers. Embryo development was observed until Day 7 after insemination. Significantly fewer follicles per heifer per week were counted (14.7+/-2.3 vs. 27.4+/-3.1 vs. 23.1+/-2.8) and aspirated (12.0+/-2.0 vs. 21.8+/-2.7 vs. 20.1+/-2.6) in heifers on the once-weekly than twice-weekly aspiration treatment (P<0.01) or on the once-weekly aspiration after FSH treatment (P<0.05). There were no significant differences between treatments in the total number of oocytes recovered per week (5.6+/-1.2 vs. 8.9+/-1.5 vs. 6.1+/-1.2), but significantly more oocytes per heifer per week recovered from animals treated with FSH were graded Category 1 (2.8+/-0.4), i.e., >4 layers good cumulus with a clear, even cytoplasm, than from animals aspirated once (0.9+/-0.2; P<0.01) or twice a week (1.5+/-0.3; P<0.05). The number of transferable morulae plus blastocysts produced per heifer per week was higher from animals aspirated twice a week (2.4+/-0.4; P<0.05) or once a week following FSH treatment (2.1+/-0.4; P<0.05) than from animals aspirated once a week without FSH treatment (1.0+/-0.3). In conclusion, FSH treatment of bovine oocyte donors aspirated once a week enabled a similar number of transferable embryos to be produced per donor week as aspiration twice a week without FSH treatment. These 2 treatments produced twice as many transferable embryos per donor week as aspiration once a week without FSH treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号