首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Aims With the global atmospheric nitrogen (N) deposition increasing, the effect of N deposition on terrestrial plant diversity has been widely studied. Some studies have reviewed the effects of N deposition on plant species diversity; however, all studies addressed the effects of N deposition on plant community focused on species richness in specific ecosystem. There is a need for a systematic meta-analysis covering multiple dimensions of plant diversity in multiple climate zones and ecosystems types. Our goal was to quantify changes in species richness, evenness and uncertainty in plant communities in response to N addition across different environmental and experimental contexts.  相似文献   

2.
氮沉降是驱动生物多样性变化的重要因素之一。一般认为氮沉降会改变物种多样性, 而且在外源氮添加条件下, 禾草类植物和落叶灌木比杂类草和常绿灌木更具竞争优势。不过该结论更多是从高寒草甸和荒漠草原等生态系统中得到, 主要是针对同一生活型内植物之间的竞争关系, 不涉及不同生活型植物之间的相互作用, 并且由于草原和草甸等生态系统没有明显的垂直结构, 同一层次中植物的高度差异较小, 有可能高估了光照因素对植物的作用。因此从森林生态系统入手, 可以进一步阐述不同生活型植物对氮沉降的响应。本文以我国北方典型的落叶阔叶林——辽东栎(Quercus wutaishanica)林为研究对象, 设置CK (0 kg N·ha -1·yr -1)、N50 (50 kg N·ha -1·yr -1)和N100 (100 kg N·ha -1·yr -1) 3个梯度氮添加实验, 模拟氮沉降对温带森林生物多样性的影响。8年连续的氮添加实验结果显示: (1)氮添加显著降低了林下植物的物种丰富度和多样性, 改变了群落的物种组成; (2)氮添加提高了灌木植物的物种丰富度和多样性; 降低了草本植物的丰富度; (3)氮添加降低了禾草类植物的重要值, 提高了杂类草的重要值。该研究表明, 长期氮添加会显著改变林下植物的物种组成, 不同生活型植物对氮添加的响应亦有所差别。造成该现象的原因可能是由土壤环境变化(如养分含量提高, pH值下降)和植物获取光照能力强弱(如灌木植物获取光资源要多于草本植物)导致。  相似文献   

3.
Damage to terrestrial ecosystems from long-term atmospheric nitrogen pollution is a key conservation challenge in many industrialized countries. An important research and management priority is the identification of bioindicators to allow pollution exposure and ecological impacts to be determined at an individual site. We evaluate the impacts of nitrogen (N) deposition and identify methods with bioindication potential across a national-scale pollutant deposition gradient for British heather moorlands. Nitrogen deposition is associated with distinct changes in plant community structure, including reduced bryophyte and vascular plant species richness, and changes in the frequency of many species. Notable results include positive correlation with nitrogen for the invasive bryophyte Campylopus introflexus and negative correlation for the pollution-sensitive Hylocomium splendens and Pleurozium schreberi. Higher nitrogen deposition is associated with increased plant foliar N in a dwarf shrub and a bryophyte, increased extractable litter N, and reduced activity of the enzyme phenol oxidase. Although gradient study results cannot prove causation it is clear that Nitrogen deposition exerts a widespread impact on the ecology and biogeochemistry of heather moorlands. Bioindicators can be used to evaluate exposure and impacts, a promising approach could combine plant species richness and litter nitrogen analyses.  相似文献   

4.
Aims

A century of atmospheric deposition of sulfur and nitrogen has acidified soils and undermined the health and recruitment of foundational tree species in the northeastern US. However, effects of acidic deposition on the forest understory plant communities of this region are poorly documented. We investigated how forest understory plant species composition and richness varied across gradients of acidic deposition and soil acidity in the Adirondack Mountains of New York State.

Methods

We surveyed understory vegetation and soils in hardwood forests on 20 small watersheds and built models of community composition and richness as functions of soil chemistry, nitrogen and sulfur deposition, and other environmental variables.

Results

Community composition varied significantly with gradients of acidic deposition, soil acidity, and base cation availability (63% variance explained). Several species increased with soil acidity while others decreased. Understory plant richness decreased significantly with increasing soil acidity (r?=?0.60). The best multivariate regression model to predict richness (p?<?0.001, adjusted-R2?=?0.60) reflected positive effects of pH and carbon-to-nitrogen ratio (C:N).

Conclusions

The relationship we found between understory plant communities and a soil-chemical gradient, suggests that soil acidification can reduce diversity and alter the composition of these communities in northern hardwood forests exposed to acidic deposition.

  相似文献   

5.
Findings from nitrogen (N) manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha−1 yr−1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase) activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition - in both oxidised and reduced forms - and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity loss and changes in ecosystem functioning across European heathlands.  相似文献   

6.
Aims To examine if and how species and phylogenetic diversity change in relation to disturbance, we conducted a review of ecological literature by testing the consistency of the relationship between phylogenetic diversity and disturbance and compared taxonomic groups, type of disturbance and ecosystem/habitat context. We provide a case study of the phylogenetic diversity–disturbance relationship in angiosperm plant communities of a boreal forest region, compared with types of natural and anthropogenic disturbances and plant growth forms.Methods Using a large-scale sampling plot network along a complete (0–100%) anthropogenic disturbance gradient in the boreal biome, we compared the changes of angiosperm plant community structure and composition across plots. We estimated natural disturbance with historical records of major fires. We then calculated phylogenetic diversity indexes and determined species richness in order to compare linear and polynomial trends along disturbance gradients. We also compared the changes of community structure for different types of anthropogenic disturbances and examined how the relationships between species and phylogenetic diversity and disturbance regimes vary among three different life forms (i.e. forbs, graminoids and woody plants).Important findings Phylogenetic diversity was inconsistently related to disturbance in previous studies, regardless of taxon, disturbance type or ecosystem context. In the understudied boreal ecosystem, angiosperm plant communities varied greatly in species richness and phylogenetic diversity along anthropogenic disturbance gradients and among different disturbance types. In general, a quadratic curve described the relationship between species richness and anthropogenic disturbance, with the highest richness at intermediate anthropogenic disturbance levels. However, phylogenetic diversity was not related to disturbance in any consistent manner and species richness was not correlated with phylogenetic diversity. Phylogenetic relatedness was also inconsistent across plant growth forms and different anthropogenic disturbance types. Unlike the inconsistent patterns observed for anthropogenic disturbance, community assembly among localities varying in time since natural disturbance exhibited a distinct signature of phylogenetic relatedness, although those trends varied among plant growth forms.  相似文献   

7.
Diversity patterns of herbivores have been related to climate, host plant traits, host plant distribution and evolutionary relationships individually. However, few studies have assessed the relative contributions of a range of variables to explain these diversity patterns across large geographical and host plant species gradients. Here we assess the relative influence that climate and host plant traits have on endophagous species (leaf miners and plant gallers) diversity across a suite of host species from a genus that is widely distributed and morphologically variable. Forty-six species of Acacia were sampled to encapsulate the diversity of species across four taxonomic sections and a range of habitats along a 950 km climatic gradient: from subtropical forest habitats to semi-arid habitats. Plant traits, climatic variables, leaf miner and plant galler diversity were all quantified on each plant species. In total, 97 leaf mining species and 84 plant galling species were recorded from all host plants. Factors that best explained leaf miner richness across the climatic gradient (using AIC model selection) included specific leaf area (SLA), foliage thickness and mean annual rainfall. The factor that best explained plant galler richness across the climatic gradient was C:N ratio. In terms of the influence of plant and climatic traits on species composition, leaf miner assemblages were best explained by SLA, foliage thickness, mean minimum temperature and mean annual rainfall, whilst plant gall assemblages were explained by C:N ratio, %P, foliage thickness, mean minimum temperature and mean annual rainfall. This work is the first to assess diversity and structure across a broad environmental gradient and a wide range of potential key climatic and plant trait determinants simultaneously. Such methods provide key insights into endophage diversity and provide a solid basis for assessing their responses to a changing climate.  相似文献   

8.
Tundra vegetation is responding rapidly to on-going climate warming. The changes in plant abundance and chemistry might have cascading effects on tundra food webs, but an integrated understanding of how the responses vary between habitats and across environmental gradients is lacking. We assessed responses in plant abundance and plant chemistry to warmer climate, both at species and community levels, in two different habitats. We used a long-term and multisite warming (OTC) experiment in the Scandinavian forest?Ctundra ecotone to investigate (i) changes in plant community composition and (ii) responses in foliar nitrogen, phosphorus, and carbon-based secondary compound concentrations in two dominant evergreen dwarf-shrubs (Empetrum hermaphroditum and Vaccinium vitis-idaea) and two deciduous shrubs (Vaccinium myrtillus and Betula nana). We found that initial plant community composition, and the functional traits of these plants, will determine the responsiveness of the community composition, and thus community traits, to experimental warming. Although changes in plant chemistry within species were minor, alterations in plant community composition drive changes in community-level nutrient concentrations. In view of projected climate change, our results suggest that plant abundance will increase in the future, but nutrient concentrations in the tundra field layer vegetation will decrease. These effects are large enough to have knock-on consequences for major ecosystem processes like herbivory and nutrient cycling. The reduced food quality could lead to weaker trophic cascades and weaker top down control of plant community biomass and composition in the future. However, the opposite effects in forest indicate that these changes might be obscured by advancing treeline forests.  相似文献   

9.
Climate change would have profound influences on community structure and composition, and subsequently has impacts on ecosystem functioning and feedback to climate change. A field experiment with increased temperature and precipitation was conducted to examine effects of experimental warming, increased precipitation and their interactions on community structure and composition in a temperate steppe in northern China since April 2005. Increased precipitation significantly stimulated species richness and coverage of plant community. In contrast, experimental warming markedly reduced species richness of grasses and community coverage. Species richness was positively dependent upon soil moisture (SM) across all treatments and years. Redundancy analysis (RDA) illustrated that SM dominated the response of community composition to climate change at the individual level, suggesting indirect effects of climate change on plant community composition via altering water availability. In addition, species interaction also mediated the responses of functional group coverage to increased precipitation and temperature. Our observations revealed that both abiotic (soil water availability) and biotic (interspecific interactions) factors play important roles in regulating plant community structure and composition in response to climate change in the semiarid steppe. Therefore these factors should be incorporated in model predicting terrestrial vegetation dynamics under climate change.  相似文献   

10.
Global energy use and food production have increased nitrogen inputs to ecosystems worldwide, impacting plant community diversity, composition, and function. Previous studies show considerable variation across terrestrial herbaceous ecosystems in the magnitude of species loss following nitrogen (N) enrichment. What controls this variation remains unknown. We present results from 23 N-addition experiments across North America, representing a range of climatic, soil and plant community properties, to determine conditions that lead to greater diversity decline. Species loss in these communities ranged from 0 to 65% of control richness. Using hierarchical structural equation modelling, we found greater species loss in communities with a lower soil cation exchange capacity, colder regional temperature, and larger production increase following N addition, independent of initial species richness, plant productivity, and the relative abundance of most plant functional groups. Our results indicate sensitivity to N addition is co-determined by environmental conditions and production responsiveness, which overwhelm the effects of initial community structure and composition.  相似文献   

11.
Human disturbance in alpine habitats is expected to increase, and improved knowledge of short-term recovery after disturbance events is necessary to interpret vegetation responses and formulate planning and mitigation efforts. The ability of a plant community to return to its original state after a disturbance (community resilience) depends on species composition and environmental conditions. The aim of this study is to analyze initial short-term effects of disturbance in alpine plant communities in contrasting climates (oceanic vs. continental; central Norway). We used a nested block-design to examine vegetative regrowth and seedling recruitment after experimental perturbation. Three plant community types along the snow pack gradient were exposed to (1) no disturbance, (2) clipping, and (3) clipping and uprooting. Slow vegetative regrowth and low seedling establishment rates were found in dry alpine ridges and late-melting oceanic snowbed communities. Leeside habitats with intermediate snow conditions were found more resilient. The difference was related to growth form and species diversity. Woody species, which dominated in ridges and oceanic snowbeds, showed the most negative response to disturbance. Species-rich plant communities dominated by graminoids and herbs showed higher rates of regrowth. Species richness seems to cause resilience to the plant communities through higher response diversity. Plant communities at the extreme ends of abiotic gradients, ridges and late-melting snowbeds, will be most sensitive to both disturbance and environmental change. In an up-scaled human-used landscape disturbance effects will be amplified and further limit recovery to a pre-disturbance state.  相似文献   

12.
Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands. We examined the community structure of two pathogenic groups—fungal pathogens and oomycetes—in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant community response to climate change.Subject terms: Fungal ecology, Soil microbiology, Grassland ecology  相似文献   

13.
Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34 531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance.  相似文献   

14.
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins.  相似文献   

15.
Native annual plant species constitute a large proportion of the plant diversity found in arid vegetation types within the southwestern United States; yet, little is known about controls on diversity patterns along natural and anthropogenic gradients. In this study we evaluated native species richness and exotic species cover across overlapping gradients of precipitation, wind, and N deposition in the Colorado Desert of southern California. Factors allowing native diversity to persist under high N deposition and high wind were also evaluated in a second, focused study at one end of the gradient. We found that gradients in precipitation, nitrogen deposition, and wind were the most important factors to native richness and exotic species cover across the landscape, while local heterogeneity in bare ground influenced richness and cover at the high deposition/windy, or high-disturbance, end of the gradient. Patterns of native diversity were evaluated across the gradients using non-metric multidimensional scaling, which showed diversity was split into two axes: one strongly correlated to precipitation and the other strongly correlated with disturbance factors. The disturbance factors were also positively associated with exotic grass and forb cover. In total, these results indicate that large-scale patterns in disturbance and exotic species cover negatively affect native annual plant species diversity but native species can also persist due to local heterogeneity.  相似文献   

16.
Atmospheric nitrogen (N) deposition is composed of both inorganic nitrogen (IN) and organic nitrogen (ON), and these sources of N may exhibit different impacts on ecosystems. However, our understanding of the impacts of N deposition is largely based on experimental gradients of INs or more rarely ONs. Thus, the effects of N deposition on ecosystem productivity and biodiversity may be biased. We explored the differential impacts of N addition with different IN:ON ratios (0:10, 3:7, 5:5, 7:3, and 10:0) on aboveground net primary productivity (ANPP) of plant community and plant diversity in a typical temperate grassland with a long-term N addition experiment. Soil pH, litter biomass, soil IN concentration, and light penetration were measured to examine the potential mechanisms underlying species loss with N addition. Our results showed that N addition significantly increased plant community ANPP by 68.33%–105.50% and reduced species richness by 16.20%–37.99%. The IN:ON ratios showed no significant effects on plant community ANPP. However, IN-induced species richness loss was about 2.34 times of ON-induced richness loss. Soil pH was positively related to species richness, and they exhibited very similar response patterns to IN:ON ratios. It implies that soil acidification accounts for the different magnitudes of species loss with IN and ON additions. Overall, our study suggests that it might be reasonable to evaluate the effects of N deposition on plant community ANPP with either IN or ON addition. However, the evaluation of N deposition on biodiversity might be overestimated if only IN is added or underestimated if only ON is added.  相似文献   

17.
Invasive species removal is an important first step toward restoring invaded ecosystems; however, restoration following removal may be hindered by (1) unintended consequences of management, such as habitat destabilization, and/or (2) legacy effects of the invader, such as persistent alterations of soil structure or plant community composition. During 1956–1972, approximately 26,000 individuals of the non‐native pine, Pinus nigra, were planted into multiple freshwater sand dune habitats as a stabilization measure on the eastern shore of Lake Michigan in Allegan County, MI, U.S.A. From 2004 to 2010, we evaluated the recovery of foredune and blowout habitats following P. nigra removal in 2003–2005. We compared sand movement and plant community structure, composition, and richness between removal and control sites over the 6 years following pine removal. In addition, we evaluated the impact of litter removal on recolonization of native graminoids in foredunes. Sand movement patterns never differed between removal and control sites in foredunes; however, accumulation was more common in removal sites in blowouts 1 and 6 years following pine removal. Vegetation cover in removal sites became indistinguishable from control sites in both foredunes and blowouts, but species richness for both forb and woody species was higher in removal sites in blowouts. Removal sites in both foredunes and blowouts had higher cover by forbs and lower cover by graminoids. Pine litter did not inhibit recolonization of foredunes by native graminoids. These results suggest that high disturbance habitats, such as sand dunes, have the potential to recover from invasion if the mechanism of disturbance is restored and pioneer species are present to recolonize the system.  相似文献   

18.
Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.  相似文献   

19.
Question: Which environmental variables affect floristic species composition of acid grasslands in the Atlantic biogeographic region of Europe along a gradient of atmospheric N deposition? Location: Transect across the Atlantic biogeographic region of Europe including Ireland, Great Britain, Isle of Man, France, Belgium, The Netherlands, Germany, Norway, Denmark and Sweden. Materials and Methods: In 153 acid grasslands we assessed plant and bryophyte species composition, soil chemistry (pH, base cations, metals, nitrate and ammonium concentrations, total C and N, and Olsen plant available phosphorus), climatic variables, N deposition and S deposition. Ordination and variation partitioning were used to determine the relative importance of different drivers on the species composition of the studied grasslands. Results: Climate, soil and deposition variables explained 24% of the total variation in species composition. Variance partitioning showed that soil variables explained the most variation in the data set and that climate and geographic variables accounted for slightly less variation. Deposition variables (N and S deposition) explained 9.8% of the variation in the ordination. Species positively associated with N deposition included Holcus mollis and Leontodon hispidus. Species negatively associated with N deposition included Agrostis curtisii, Leontodon autumnalis, Campanula rotundifolia and Hylocomium splendens. Conclusion: Although secondary to climate gradients and soil biogeochemistry, and not as strong as for species richness, the impact of N and S deposition on species composition can be detected in acid grasslands, influencing community composition both directly and indirectly, presumably through soil‐mediated effects.  相似文献   

20.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号