首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Specialised blend films have been prepared by blending 1% w/v konjac glucomannan aqueous with 1% w/v chitosan solution in acetate solution and drying at room temperature for 24 h. The condensed state structure and miscibility of the blend films were studied by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction. The results indicated that the blend film obtained from an 80/20 mixing ratio of konjac glucomannan and chitosan derivate showed the highest miscibility and blend homogeneity, and that strong intermolecular hydrogen bonds took place between the amino groups of chitosan and the hydroxyl groups of konjac glucomannan; thus the tensile strength also achieved its maximum in this ratio. The cell morphologies on the pure and blend films were examined by light microscopy and cell viability was studied by using MTT assay. The results showed that the particular blend film was more suitable for the cell culture than the pure konjac glucomannan film, and that the cells cultured on this blend film had greater spreading coefficients than that of the pure konjac glucomannan film. As a result of the good mechanical properties, miscibility and biocompatibility, the blend film is a promising biomaterial matrix.  相似文献   

2.
MAN5, the main extracellular saccharide hydrolase from Bacillus sp. MSJ-5, is an endo-β-mannanase with a demand of at least five sugar moieties for effective cleavage. It has a pH optimum of 5.5 and a temperature optimum of 50°C and is stable at pH 5–9 or below 65°C. MAN5 has a very high ability to hydrolyze konjac flour, 10 U/mg of which could completely liquefy konjac flour gum in 10 min at 50°C. HPLC analysis showed that most glucomannan in the konjac flour was hydrolyzed into a large amount of oligosaccharides with DP of 2–6 and a very small amount of monosaccharide. With the culture supernatant as enzyme source, the optimum condition to prepare oligosaccharides from konjac flour was obtained as 10 mg/ml konjac flour incubated with 10 U/mg enzyme at 50°C for 24 h. With this condition, more than 90% polysaccharides in the konjac flour solution were hydrolyzed into oligosaccharides and a little monosaccharide (2.98% of the oligosaccharides). Konjac flour is an underutilized agricultural material with low commercial value in China. With MAN5, konjac flour can be utilized to generate high value-added oligosaccharides. The high effectiveness and cheapness of this technique indicates its potential in industry. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Min Zhang and Xiu-Lan Chen contributed equally to this work.  相似文献   

3.
5‐Aminolevulinic acid (5‐ALA) is a known plant regulator and growth promoter. It is a very sensitive and highly unstable compound that is easy to deteriorate. Here we propose a novel approach to stabilize 5‐ALA into a film. Films from konjac glucomannan (KGM), KGM treated with alkali solution (KGOH), chitosan (CHI) as well as blends between KGOH and CHI were fabricated for 5‐ALA entrapment. It was found that the efficiency of KGM film, KGOH film and CHI film for 5‐ALA entrapment was 55.7 ± 0.73%, 58.3 ± 0.36% and 60.3 ± 0.18 %, respectively. A 25:75 (%w/w) blended film (KGOH/CHI) showed the highest entrapment efficiency of 5‐ALA (65.9 ± 0.37%) versus other films. The possible mechanism for entrapment of 5‐ALA in blended film was postulated under two mechanisms. A secondary amide that leads to the interaction between the amino group of CHI and carboxyl group of 5‐ALA is proposed as the first mechanism. The fact that the 5‐ALA molecule was entrapped within the complexity of KGOH structure is proposed as the second mechanism. Therefore, stabilizing 5‐ALA in a film may be an alternative way to use and preserve 5‐ALA for further applications.  相似文献   

4.
Physicochemical characterization of konjac glucomannan   总被引:1,自引:0,他引:1  
Four commercial konjac glucomannan (KGM) samples and a glucomannan derived from yeast were characterized by aqueous gel permeation chromatography coupled with multi angle laser light scattering (GPC-MALLS). Disaggregation of aqueous glucomannan solutions through controlled use of a microwave bomb facilitated reproducible molar mass distribution determination alleviating the need for derivatization of the polymer or the use of aggressive solvents. Further characterization was undertaken by use of capillary viscometry and photon correlation spectroscopy (PCS). The weight average molecular masses (M(w)) determined were in the region of 9.0 +/- 1.0 x 10(5) g mol(-1) for KGM samples and 1.3 +/- 0.4 x 10(5) g mol(-1) for the yeast glucomannan. The values determined for KGM in aqueous solution are in agreement with those reported for KGM in aqueous cadoxen. The degradation of samples observed upon autoclaving has been quantified by GPC-MALLS and intrinsic viscosity determination, allowing comparison with reported Mark-Houwink parameters. Shear flow experiments were undertaken for a range of KGM solutions of concentration 0.05 to 2.0% using a combination of controlled stress and controlled strain rheometers. The concentration dependence of the zero shear specific viscosity was determined by analysis of the data using the Ellis model. The dependence of the zero shear specific viscosity on the coil overlap parameter was defined and interpretation discussed in terms of the Martin and Tuinier equations.  相似文献   

5.
In this work, a series of glycerol-plasticized pea starch/konjac glucomannan (ST/KGM) blend films was prepared by a casting and solvent evaporation method. The structure, thermal behavior, and mechanical properties of the films were investigated by means of Fourier Transform Infrared Spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and tensile testing. The results indicated that strong hydrogen bonding formed between macromolecules of starch (ST) and konjac glucomannan (KGM), resulting in a good miscibility between ST and KGM in the blends. Compared with the neat ST, the tensile strength of the blend films were enhanced significantly from 7.4 to 68.1 MPa with an increase of KGM content from 0 to 70 wt%. The value of elongation at break of the blend films was higher than that of ST and reached a maximum value of 59.0% when the KGM content was 70 wt% and 20% of glycerol as plasticizer. The incorporation of KGM into the ST matrix also led to an increase of moisture uptake for the ST-based materials. The structure and properties of pea starch-based films were modified and improved by blending with KGM.  相似文献   

6.
把魔芋葡甘露聚糖(KGM)制备成强度高稳定性好的不溶性载体,通过钛活化固定化葡萄糖淀粉酶,检验固定化效果。偶联酶蛋白量通常是30~40mg/g载体,固定化酶的活性保持在50%以上,并且结合过酶的载体可以反复再生固定化酶。将自由酶和固定化酶进行比较,最适pH从4.0变到4.0~4.4,最适温度从50变成50~55℃,K_m从0.16%变为0.28%淀粉液。在45℃连续柱式运转反应,DE值平均98.62%,半衰期151天。结果表明本报道的主要优点是成本低廉、效果显著、操作简单和安全无毒。  相似文献   

7.
Impact of drying process and storage conditions on properties of konjac glucomannan (KGM) and whey protein isolate (WPI) blend films was investigated. Hundred grams of film solution contained 0.4 g KGM, 3.8 g WPI and 1.5 g glycerol. During drying process, air velocity was varied to produce fast drying (3 h) and slow drying (15 h) in tray dryers under 50 °C. The high air velocity resulted in a significant higher drying rate in fast drying than low air velocity in slow drying. Drying curves from both processes were well-fitted with Page model and Henderson and Pabis model (R2 ≥ 0.98). Fast drying improved transparency and mechanical properties without impairing color, solubility or water vapor permeability (WVP). Fast-dried film had less surface roughness and contained larger protein clusters. It also had greater melting enthalpy of protein aggregates, implying stronger networks. For stability study, fast-dried film was stored at 4-35 °C for 24 days. Transparency decreased over time. Overall mechanical properties have improved during storage. Color, solubility and WVP did not significantly change over time at all conditions (p?>?0.05). Microstructure of aged films was relatively similar to that of the freshly prepared film. Overall, the fast-dried KGM-WPI film exhibited reasonable storage stability.  相似文献   

8.
Effect of degree of acetylation on gelation of konjac glucomannan   总被引:3,自引:0,他引:3  
Effect of the degree of acetylation (DA) on the gelation behaviors on addition of sodium carbonate for native and acetylated konjac glucomannan (KGM) samples with a DA range from 1.38 to 10.1 wt % synthesized using acetic anhydride in the presence of pyridine as catalyst was studied by dynamic viscoelastic measurements. At a fixed alkaline concentration (CNa), both the critical gelation times (tcr) and the plateau values of storage moduli (G'sat) of the KGM gels increased with increasing DA, while at a fixed ratio of alkaline concentrations to values of DA (CNa/DA), similar tcr and values independent of DA were observed. On the whole, increasing KGM concentration or temperature shortened the gelation time and enhanced the elastic modulus for KGM gel. The effect of deacetylation rate related to the CNa/DA on the gelation kinetics of the KGM samples was discussed.  相似文献   

9.
采用静态吸附法研究脱乙酰魔芋葡苷聚糖对刚果红的吸附特性。结果表明,脱乙酰魔芋葡苷聚糖脱色率达92%,吸附速率符合拟二级速率方程,吸附等温线符合Freundlich吸附等温式。根据热力学函数关系计算出吸附焓变(ΔH)为11.033 kJ/mol,为吸热反应,升高温度有利于吸附;且不同温度下的吉布斯自由能变(ΔG)均小于0,表明脱乙酰魔芋葡苷聚糖对刚果红的吸附是自发过程。  相似文献   

10.
魔芋葡甘聚糖水溶胶的粘度行为研究   总被引:3,自引:0,他引:3  
对魔芋葡甘聚糖(KGM)水溶胶在不同剪切速率、浓度、放置时间、温度等条件下的粘度行为进行了研究.结果表明,水溶胶的粘度随着剪切速率的增加而呈指数降低,属于非牛顿流体,1%的KGM水溶胶粘度η(10-4mpa·s)与剪切速率γ(s-1)的经验公式为η=1.41+9.04e-γ/0.107;粘度η(10-4mpa·s)随KGM质量分数ω(%)增加而呈指数增加,二者关系符合η=3.88eω/0.632;1%的KGM水溶胶粘度η(10-4mpa·s)随放置时间t(h)的增加而下降,可用多项关系式η=4.93+0.027t-5.15×10-4t2来拟合;温度升高则粘度会下降,1%的KGM水溶胶的粘流活化能为14.90 kJ/mol.此外,还分别探讨了不同电解质(如NaCl,NaOH,HCl)及表面活性剂(如CTAB,SDS,Tween 80)等对KGM水溶胶粘度的影响规律.  相似文献   

11.
The rheology and melting of mixed polysaccharide gels containing konjac glucomannan (KGM), locust bean gum (LBG) and κ-carrageenan (KC) were studied. Synergy-type peaks in the Young's modulus at optimal mixing ratios were found for both KC/LBG and KC/KGM binary gels at a fixed total polysaccharide content (1:5.5 for LBG:KC and 1:7 for KGM:KC). The Young's modulus peak for KC/KGM was higher than for KC/LBG gels. The same stoichiometric mixing ratios were found when either LBG or KGM was added to KC at a fixed KC concentration, where the Young's modulus increased up to additions at the stoichiometric ratio, but leveled off at higher LBG or KGM additions. Addition of KGM or LBG to the 2-component gels beyond the stoichiometric (optimal) mixing ratio at a fixed total polysaccharide content led to a decrease in the Young's modulus and an increase in the rupture strain and stress in extension, and both trends were stronger for KGM than for LBG.  相似文献   

12.
魔芋葡甘聚糖的pH触发酶解   总被引:2,自引:1,他引:1  
利用高效凝胶排阻色谱技术研究并实现了以溶液pH值为简易调节开关,对魔芋葡甘聚糖的酶解反应进行触发调控:结果表明:pH为4时底物分子量不发生变化,而当pH调至7时,酶解被触发进行,底物分子量随之快速下降。分析表明:酶在pH变化过程中发生部分复性的可能原因是pH由7调至4的过程中发生沉淀的酶分子维持了天然构象,当pH反调回7时重新溶解,并对KGM进行剪切。  相似文献   

13.
Here we present a comparison of commonly used methodologies for the extraction and quantification of konjac glucomannan (KGM). Compositional analysis showed that the purified konjac flour (PKF) produced using a modified extraction procedure contained 92% glucomannan, with a weight average molecular weight (Mw), polydispersity index (PDI) and degree of acetylation (DA) of 9.5 ± 0.6 × 105 g mol−1, 1.2 and 2.8 wt.%. These data, plus Fourier-transform infrared spectral (FTIR) and zero shear viscosity analyses of the extract (PKF) were all consistent with the literature. Comparison of three existing methodologies for the quantitative analysis of the KGM content of the PKF, namely 3,5-dinitrosalicylic acid (3,5-DNS), phenol-sulphuric acid and enzymatic colorimetric assays; indicated that the 3,5-DNS colorimetric assay was the most reproducible and accurate method, with a linear correlation coefficient of 0.997 for samples ranging from 0.5 to 12.5 mg/ml, and recoveries between 97% and 103% across three spiking levels (250, 500 and 750 μg/g) of starch. These data provide the basis of improved good laboratory practice (GLP) for the commercial extraction and analysis of this multifunctional natural polymer.  相似文献   

14.
The current study aims to develop and evaluate a colon-specific, pulsatile drug delivery system based on an impermeable capsule. A pulsatile capsule was prepared by sealing a 5-aminosalicylic acid rapid-disintegrating tablet inside an impermeable capsule body with a konjac glucomannan (KGM)-hydroxypropyl methylcellulose (HPMC)-lactose plug. The drug delivery system showed a typical pulsatile release profile with a lag time followed by a rapid release phase. The lag time was determined by the KGM/HPMC/lactose ratio, the type of HPMC, and the plug weight. The addition of β-glucanase and rat cecal contents into the release medium shortened the lag time significantly, which predicted the probable enzyme sensitivity of the KGM plug. The in vivo studies show that the plasma drug concentration can only be detected 5 h after oral administration of the capsule, which indirectly proves the colon-specific characteristics. These results indicate that the pulsatile capsule may have therapeutic potential for colon-specific drug delivery.  相似文献   

15.
The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe.  相似文献   

16.
Ideal wound dressing materials should create a good healing environment, with immediate hemostatic effects and antimicrobial activity. In this study, chitosan/konjac glucomannan (CS/KGM) films embedded with gentamicin-loaded poly(dex-GMA/AAc) nanoparticles (giving GNP-CS/KGM films) were prepared as novel wound dressings. The results revealed that the modified CS/KGM films could be used as effective wound dressings and had significant hemostatic effects. With their microporous structure, the films could effectively absorb water from blood and trap blood cells. The gentamicinloaded poly(dex-GMA/AAc) nanoparticles (GNPs) also further promoted blood clotting, with their favorable water uptake capacity. Thus, the GNP-CS/KGM films had wound healing and synergistic effects that helped to stop bleeding from injuries, and also showed good antibiotic abilities by addition of gentamicin to the NPs. These GNPCS/KGM films can be considered as promising novel biodegradable and biocompatible wound dressings with hemostatic capabilities and antibiotic effects for treatment of external bleeding injuries.  相似文献   

17.
Gelation behaviour of konjac glucomannan with different molecular weights   总被引:8,自引:0,他引:8  
The deacetylation and gelation of konjac glucomannan (KGM) following alkali addition was investigated by Fourier transform infrared, while the rheological properties of KGM with different molecular weights were studied by dynamic viscoelastic measurements in shear mode and penetration force tests. It was found that gelation occurred after significant deacetylation had taken place. Rheometrical studies revealed that KGM with different molecular weights exhibited different gelation characteristics in small amplitude oscillatory shear flow. For the samples of fractionated KGM with lower molecular weights, a decrease in both the storage shear modulus (G') and loss shear modulus (G") was observed during gelation at temperatures above 75 degrees C. It is suggested that the decrease results from the wall slip between sample and measuring geometry owing to a rapid gelation process with syneresis and/or disentanglement of molecular chains adsorbed on the surface of parallel plates from those located in the bulk. Penetration force tests were employed to confirm the occurrence of slippage and thereby no decreases in rigidity of samples were observed during gelation. For the native KGM samples decreases in G' and G" during gelation were not observed, and it is suggested that this is due to the effect of the higher molecular weight and increased solution viscosity of these samples on the gelation kinetics.  相似文献   

18.
In this study, hydrogels for DNA-controlled release was prepared with konjac glucomannan (KGM), a water-soluble non-ionic polysaccharide, by means of deacetylated reaction and physically cross-linking method under mild conditions. The properties of the KGM hydrogels were analyzed by FTIR spectra and scanning electron microscopy (SEM). The integrality of the released DNA was investigated by circular dichroism (CD). The DNA release kinetics was performed using the DNA-loaded KGM gels in buffer solutions of pH 7.4 at 37+/-0.5 degrees C. Peppas model and Higuchi model were used to analysis the DNA release mechanism; the data indicated that the DNA release can be controlled by changing the preparation conditions and the structure parameters of the gels. This study suggested that the KGM hydrogels have a potential use for advanced controlled release.  相似文献   

19.
The material behaviour and antimicrobial effect of konjac glucomannan edible film incorporating chitosan and nisin at various ratio or concentrations is discussed. This activity was tested against food pathogenic bacteria namely Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. Mechanical and physical properties were determined and the results indicated that the blend film KC2 (mixing ratio konjac glucomannan 80/chitosan 20) showed the maximum tensile strength (102.8 ± 3.8 MPa) and a good transparency, water solubility, water vapor transmission ratio. The differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), etc. were used to characterize the structural change of the blend films. The results showed that the strong intermolecular hydrogen bonds took place between chitosan and konjac glucomannan. Incorporation of nisin at 42,000 IU/g of film for the selected blend film KC2 was found to have antimicrobial activity against S. aureus, L. monocytogenes, and B. cereus. The antimicrobial effect of chitosan or KC2 incorporating nisin was much better than that of konjac glucomannan incorporating nisin at each corresponding concentration and existed significant difference (p < 0.05), however, there was no significant difference on the antimicrobial effect between chitosan and KC2 both incorporating nisin. At all these levels, the ternary blend film KC2-nisin had a satisfactory mechanical, physical properties and antimicrobial activity, and could be applied as a potential ‘active’ packaging material.  相似文献   

20.
A novel antibacterial film was prepared by blending konjac glucomannan (KGM) and poly(diallydimethylammonium chloride) (PDADMAC) in an aqueous system. The antibacterial activity of the films against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces were measured by the halo zone test and the double plate method. The films exhibited an excellent antibacterial activity against B. subtilis and S. aureus but not against E. coli, P. aeruginosa or Saccharomyces. The miscibility, morphology, thermal stability, water vapour permeability and mechanical properties of the blend films were investigated by density determination, SEM, ATR-IR, XRD, DSC, TGA, WVA and tensile tests. The results of density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt%. Moreover, SEM and XRD confirmed the result. ATR-IR showed that strong intermolecular hydrogen bonds and electrostatic interactions occurred between KGM and PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04% and the water vapour permeability decreased when the PDADMAC content was 20 wt%. The thermal stability of the blends was higher than pure KGM. The blends should be good antibacterial materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号