首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
The mechanism of nosocomial respiratory infections caused by MRSA (methicillin-resistant Staphylococcus aureus) in geriatric patients was investigated. Seriously ill patients (SIP) undergoing naso-gastric tube feeding or intravenous hyperalimentation and moderately ill patients (MIP) who were orally fed, were examined for their colonization and infection by Staphylococcus aureus (S. aureus) in the respiratory tract. Colonization of MRSA in the upper respiratory tract in SIP was from six to ten times higher than that in MIP and was associated with a high incidence of MRSA pulmonary infections. In vitro S. aureus adherence to nasal or oropharyngeal cells demonstrated that bacteria binding to nasal cells was higher, which probably can be interpreted as an elevated occurrence of S. aureus colonization in the nasal cavity than in the throat. The binding activity of MRSA was not superior to that of MSSA (methicillin-sensitive S. aureus). Though MRSA binding to the nasal cells from SIP was not higher than those from MIP, MRSA colonization in the upper respiratory tract was more frequently seen in SIP (P < 0.01). A higher incidence of total infectious episodes (P < 0.02-0.001) and more frequent use of antibiotics (P < 0.02-0.001), which were potent against MSSA might be the basis for selection of MRSA in these patients. In fact, the rate of MRSA colonization on the skin (pressure sores) was also higher in SIP (P < 0.01). A low nutritional state in SIP (P < 0.01-0.02) might also be associated with MRSA colonization. The present results indicate that the high frequency of infections, antibiotic administration, MRSA skin colonization and low nutritional condition, are enhancing factors of MRSA acquisition in the respiratory tract for SIP undergoing artificial feeding, in a geriatric hospital.  相似文献   

2.
Abstract

A novel set of 16 hybrids of bromopyrrole alkaloids with aroyl hydrazone were designed, synthesized and evaluated for antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA; ATCC 43866), methicillin-susceptible Staphylococcus aureus (MSSA; ATCC 35556) and Staphylococcus epidermidis (SE, S. epidermidis ATCC 35984). Of the 16 tested hybrids, 14 exhibited equal or superior antibiofilm activity against MSSA and MRSA relative to standard vancomycin. Compound 4m showed highest potency with antibiofilm activity of 0.39?µg/mL and 0.78?µg/mL against MSSA and MRSA, respectively. Thus, this compound could act as a potential lead for further development of new antistaphylococcal drugs.  相似文献   

3.
Recent creation of a Unified Microbiome Initiative (UMI) has the aim of understanding how microbes interact with each other and with us. When pathogenic Staphylococcus aureus infects the skin, the interplay between S. aureus and skin commensal bacteria occurs. Our previous data revealed that skin commensal bacteria can mediate fermentation against the growth of USA300, a community‐acquired methicillin‐resistant S. aureus MRSA. By using a fermentation process with solid media on a small scale, we define poly(ethylene glycol) dimethacrylate (PEG‐DMA) as a selective fermentation initiator which can specifically intensify the probiotic ability of skin commensal Staphylococcus epidermidis bacteria. At least five short‐chain fatty acids including acetic, butyric and propionic acids with anti‐USA300 activities are produced by PEG‐DMA fermentation of S. epidermidis. Furthermore, the S. epidermidis‐laden PEG‐DMA hydrogels effectively decolonized USA300 in skin wounds in mice. The PEG‐DMA and its derivatives may become novel biomaterials to specifically tailor the human skin microbiome against invading pathogens.  相似文献   

4.
The aim of this study is to compare methicillin-resistant Staphylococcus aureus (MRSA) detection methods and to generate antibiogram profile of S. aureus clinical isolates from two teaching hospitals in Malaysia including three reference isolates from American Type Culture Collection (ATCC). The mecA/nuc gene PCR amplification, spot inoculation test and oxacillin disc diffusion test were applied to compare its MRSA detection abilities. No disagreement between the three methods was observed. From 29 bacterial isolates (including the ATCC strains) tested, 19 isolates were confirmed as S. aureus with 14 isolates exhibiting multidrug-resistance. All isolates are still susceptible to vancomycin as indicated by the E-test result. Current biochemical tests are comparable with the molecular detection method for MRSA used in this study while multidrug-resistance traits are present in both MRSA and MSSA clinical isolates. Presently, mupirocin seems to be the best alternative for vancomycin against multidrug-resistant S. aureus infections in Malaysia. Susceptibility profile of 19 S. aureus isolates acquired from two teaching hospitals and ATCC towards 16 selected antibiotics was analyzed and an antibiogram was generated. Findings also indicated resistance against many of the available antibiotics and thus an urgent need to search for alternative antibiotics.  相似文献   

5.
Staphylococcus aureus is one of the most frequently occurring hospital- and community-associated pathogenic bacteria featuring high morbidity and mortality. The occurrence of methicillin-resistant S. aureus (MRSA) has increased persistently over the years. Therefore, developing novel anti-MRSA drugs to circumvent drug resistance of S. aureus is highly important. Roemerine, an aporphine alkaloid, has previously been reported to exhibit antibacterial activity. The present study aimed to investigate whether roemerine can maintain these activities against S.aureus in vivo and further explore the underlying mechanism. We found that roemerine is effective in vitro against four S. aureus strains as well as in vivo against MRSA insepticemic BALB/c mice. Furthermore, roemerine was found to increase cell membrane permeability in a concentration-dependent manner. These findings suggest that roemerine may be developed as a promising compound for treating S. aureus, especially methicillin-resistant strains of these bacteria.  相似文献   

6.
Methicillin-resistant Staphylococcus aureus (MRSA) with reduced sensitivity to vancomycin (VAN) has caused many clinical cases of VAN treatment failure, but the molecular mechanism underlying the reduced sensitivity to VAN is still unclear. We isolated a heterogeneous VAN-intermediate Staphylococcus aureus (hVISA), which was also a MRSA strain with reduced sensitivity to VAN. To investigate the molecular mechanism underlying the reduced sensitivity to VAN exhibited by the hVISA strain, we compared the hVISA strain with a VAN-sensitive MRSA strain, known as the N315 strain. The images captured by transmission electron microscopy showed that the cell wall of the hVISA strain was significantly thicker than that of the N315 strain (36·72 ± 1·04 nm vs 28·15 ± 1·25 nm, P < 0·05), and the results of real-time quantitative PCR analysis suggested that the expression levels of the cell wall thickness related genes (glmS, vraR/S, sgtB, murZ and PBP4) of the hVISA strain were significantly higher than those of the N315 strain (P < 0·05). In conclusion, this study indicated that the upregulation of the expression of the genes related to cell wall synthesis might be the molecular mechanism underlying the cell wall thickening of the hVISA strain and might be related to its resistance to VAN.  相似文献   

7.
Aims: To characterize the antibacterial synergy of the antimicrobial peptide, ranalexin, used in combination with the anti‐staphylococcal endopeptidase, lysostaphin, against methicillin‐resistant Staphylococcus aureus (MRSA), and to assess the combination’s potential as a topical disinfectant or decolonizing agent for MRSA. MRSA causes potentially lethal infections, and pre‐operative patients colonized with MRSA are often treated with chlorhexidine digluconate and mupirocin cream to eradicate carriage. However, chlorhexidine is unsuitable for some patients, and mupirocin resistance is increasingly encountered, indicating new agents are required. Methods and Results: Using an ex vivo assay, ranalexin and lysostaphin tested in combination reduced viable MRSA on human skin to a greater extent than either compound individually. The combination killed bacteria within 5 min and remained effective and synergistic even in high salt and low pH conditions. Conclusions: The combination is active against MRSA on human skin and under conditions that may be encountered in sweat. Significance and Impact of the Study: Although the exact mechanism of activity remains unresolved, considering its specific spectrum of activity, fast killing kinetics and low likelihood of resistance arising, the combination of ranalexin with lysostaphin warrants consideration as a new agent to eradicate nasal and skin carriage of Staph. aureus, including MRSA.  相似文献   

8.
Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA), is an important cause of pyogenic skin and soft tissue infections (SSTIs). MRSA is an important pathogen in the healthcare sector that has neither been eliminated from the hospital nor community environment. In humans, S. aureus causes superficial lesions in the skin and localized abscesses, pyogenic meningitis/encephalitis, osteomyelitis, septic arthritis, invasive endocarditis, pneumonia, urinary tract infections and septicemia. Investigations focused in the search of other alternatives for the treatment of MRSA infections are in progress. Among the range of compounds whose bactericidal activity is being investigated, ZnO nanoparticles (ZnO–NPs) appears most promising new unconventional antibacterial agent that could be helpful to confront this and other drug-resistant bacteria. The aim of present study is to investigate the antibacterial potential of ZnO–NPs against Staphylococcus species isolated from the pus and wounds swab from the patients with skin and soft tissue infections in a tertiary care hospital of north India. ZnO–NPs (≈19.82 nm) synthesized by sol–gel process were characterized using scanning electron microscopy, X-ray diffraction , and Atomic force microscopy. The antibacterial potential was assessed using time-dependent growth inhibition assay, well diffusion test, MIC and MBC test and colony forming units methods. ZnO–NPs inhibited bacterial growth of methicillin-sensitive S. aureus (MSSA), MRSA and methicillin-resistant S. epidermidis (MRSE) strains and were effective bactericidal agents that were not affected by drug-resistant mechanisms of MRSA and MRSE.  相似文献   

9.
10.
Recent clinical trials to develop anti‐methicillin‐resistant Staphylococcus aureus (MRSA) therapeutic antibodies have met unsuccessful sequels. To develop more effective antibodies against MRSA infection, a panel of mAbs against S. aureus cell wall was generated and then screened for the most protective mAb in mouse infection models. Twenty‐two anti‐S. aureus IgG mAbs were obtained from mice that had been immunized with alkali‐processed, deacetylated cell walls of S. aureus. One of these mAbs, ZBIA5H, exhibited life‐saving effects in mouse models of sepsis caused by community‐acquired MRSA strain MW2 and vancomycin‐resistant S. aureus strain VRS1. It also had a curative effect in a MW2‐caused pneumonia model. Curiously, the target of ZBIA5H was considered to be a conformational epitope of either the 1,4‐β‐linkage between N‐acetylmuramic acid and N‐acetyl‐D‐glucosamine or the peptidoglycan per se. Reactivity of ZBIA5H to S. aureus whole cells or purified peptidoglycan was weaker than that of most of the other mAbs generated in this study. However, the latter mAbs did not have the protective activities against S. aureus that ZBIA5H did. These data indicate that the epitopes that trigger production of high‐yield and/or high‐affinity antibodies may not be the most suitable epitopes for developing anti‐infective antibodies. ZBIA5H or its humanized form may find a future clinical application, and its target epitope may be used for the production of vaccines against S. aureus infection.  相似文献   

11.
Antimicrobial peptides from amphibian skin secretion are a promising source for the development of alternative antibiotics against the urgent antibiotic resistance. Methicillin-resistant S. aureus (MRSA) has been found to persist in both early and late disease course of cystic fibrosis (CF). Japonicin-2LF was isolated from the skin secretion of Fujian Large-headed Frog (Limnonectes fujianensis) via the combination of cDNA cloning and MS/MS sequencing. The antimicrobial and anti-biofilm activities of Japonicin-2LF were evaluated using both reference and clinic isolated strains. The permeability of the cell membrane treated by the peptide was revealed by fluorescent staining. The cytotoxicity was examined by haemolysis, MTT and LDH assays. Wax moth larvae (Galleria mellonella) infection model was applied to assess the efficacy of Japonicin-2LF against the reference and clinic MRSA isolates in vivo. Japonicin-2LF exhibited potent antimicrobial activity, particularly against Gram-positive bacteria Staphylococcus aureus and MRSA, killing the bacteria via membrane permeabilisation. Additionally, Japonicin-2LF demonstrated the inhibition and eradication of biofilms, particularly against the biofilm of MRSA by eradicating the biofilm matrix as well as killing all the sessile bacteria. In the in vivo assay, Japonicin-2LF significantly decreased the mortality of MRSA acute infected larvae. In conclusion, it is a novel antimicrobial peptide discovered from the skin secretion of Limnonectes fujianensis, and particularly effective against both planktonic and sessile MRSA. The further in vivo study suggests that Japonicin-2LF could be a potential drug candidate to control the MRSA infection in cystic fibrosis patients.  相似文献   

12.
Staphylococcus capitis is a member of the human and mammal skin microbiomes and is considered less harmful than Staphylococcus aureus. S. capitis subsp. urealyticus BN2 was isolated from a cat and expressed strong antibacterial activity against a range of Gram-positive species, most notably including S. aureus strains with resistance to methicillin (MRSA) and strains with intermediate resistance to vancomycin (VISA). These latter strains are normally relatively resistant to bacteriocins, due to cell wall and cell membrane modifications. Genomic sequencing showed that the strain harboured at least two complete gene clusters for biosynthesis of antagonistic substances. The complete biosynthetic gene cluster of the well-known lantibiotic gallidermin was encoded on a large plasmid and the mature peptide was present in isopropanol cell extracts. In addition, a chromosomal island contained a novel non-ribosomal peptide synthetase (NRPS) gene cluster. Accidental deletion of two NRPS modules and partial purification of the anti-VISA activity showed that this novel bacteriocin represents a complex of differently decorated, non-ribosomal peptides. Additionally, a number of phenol-soluble modulins (PSMs) was detected by mass spectrometry of whole cells. Producing these compounds, the strain was able to outcompete several S. aureus strains, including MRSA and VISA, in tube cultures.  相似文献   

13.
To explore the prevalence and molecular characteristics of methicillin‐resistant Staphylococcus aureus (MRSA) in veterinary medical practices, MRSA carriage was tested among 96 veterinarians (Vets), 70 veterinary technicians (VTs) and 292 dogs with which they had contact at 71 private veterinary clinics (VCs) in Hokkaido, Japan. MRSA isolates were obtained from 22 Vets [22.9%] and 7 VTs [10%]. The prevalence of MRSA among Vets was as high as that found in an academic veterinary hospital in our previous study. In contrast, only two blood donor dogs and one dog with liver disease (1.0%, 3/292) yielded MRSA. All MRSA‐positive dogs were reared or treated in different VCs, in each of which at least one veterinary staff member carrying MRSA worked. Sequence types (ST) identified by multilocus sequence typing, spa types, and SCCmec types for canine MRSA isolates (ST5‐spa t002‐SCCmec II [from two dogs] or ST30‐spa t021‐SCCmec IV [from a dog]) were concordant with those from veterinary staff members in the same clinics as the MRSA‐positive dogs, with which they had potentially had contact. Most MRSA isolates from veterinary staff were the same genotype (SCCmec type II and spa type t002) as a major hospital‐acquired MRSA clone in Japan. The remaining MRSA was the same genotypes as domestic and foreign community‐associated MRSA. Measures against MRSA infection should be provided in private VCs.  相似文献   

14.

Background  

Staphylococcus aureus infection in patients with cystic fibrosis (CF) is frequent and may be due to colonization by a few pathogenic lineages. Systematic genotyping of all isolates, methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) is necessary to identify such lineages and follow their evolution in patients. Multiple-locus variable-number tandem repeat analysis (MLVA/VNTR) was used to survey S. aureus clinical isolates in a French paediatric CF centre.  相似文献   

15.
Mupirocin is the first-line topical antibacterial drug for treating skin infections caused primarily by meticillin-resistant Staphylococcus aureus (MRSA). Its widespread use since its introduction more than 30 years ago has resulted in the global emergence of mupirocin-resistant strains of MRSA. Antimicrobial peptides (AMPs) are a promising class of antibacterial compounds that can potentially be developed to replace mupirocin due to their rapid membrane-targeting bactericidal mode of action and predicted low propensity for resistance development. Herein, we conducted and compared the antibacterial activities of 61 AMPs between 3 and 11 residues in length reported in the literature over the past decade against mupirocin-resistant MRSA. The most potent AMP, 11-residue peptide 50, was selected and tested against a panel of clinical isolates followed by a time-kill and a human dermal keratinocyte cytotoxicity assay. Lastly, peptide 50 was formulated into a topical spray which showed strong in vitro bactericidal effects against mupirocin-resistant MRSA. Our results strongly suggest that peptide 50 has the potential to be further developed into a new class of topical antibacterial agent for treating drug-resistant MRSA skin infections.  相似文献   

16.
Staphylococcus aureus is a major pathogen in humans and causes serious problems due to antibiotic resistance. We investigated the antimicrobial effect of glycyrrhetinic acid (GRA) and its derivatives against 50 clinical S. aureus strains, including 18 methicillin-resistant strains. The minimum inhibitory concentrations (MICs) of GRA, dipotassium glycyrrhizate, disodium succinoyl glycyrrhetinate (GR-SU), stearyl glycyrrhetinate and glycyrrhetinyl stearate were evaluated against various S. aureus strains. Additionally, we investigated the bactericidal effects of GRA and GR-SU against two specific S. aureus strains. DNA microarray analysis was also performed to clarify the mechanism underlying the antibacterial activity of GR-SU. We detected the antimicrobial activities of five agents against S. aureus strains. GRA and GR-SU showed strong antibacterial activities compared to the other three agents tested. At a higher concentration (above 2x MIC), GRA and GR-SU showed bactericidal activity, whereas at a concentration of 1x MIC, they showed a bacteriostatic effect. Additionally, GRA and GR-SU exhibited a synergistic effect with gentamicin. The expression of a large number of genes (including transporters) and metabolic factors (carbohydrates and amino acids) was altered by the addition of GR-SU, suggesting that the inhibition of these metabolic processes may influence the degree of the requirement for carbohydrates or amino acids. In fact, the requirement for carbohydrates or amino acids was increased in the presence of either GRA or GR-SU. GRA and GR-SU exhibited strong antibacterial activity against several S. aureus strains, including MRSA. This activity may be partly due to the inhibition of several pathways involved in carbohydrate and amino acid metabolism.  相似文献   

17.
Acanthopanax (A.) henryi (Oliv.) Harms contain many bioactive compounds commonly used in traditional Chinese medicine. The objective of the present study was to investigate the antibacterial activity of the single constituent, Eleutheroside K (ETSK) isolated from the leaves of A. henryi (Oliv.) Harms, against methicillin-resistant Staphylococcus (S.) aureus (MRSA). Broth microdilution assay was used to measure the minimal inhibitory concentration (MIC) and the MIC values of ETSK against eight clinical S. aureus strains were all 50 µg ml−1. At sub-inhibitory concentrations, a synergistic effect between oxacillin (OXA) and ETSK was confirmed using checkerboard dilution assay and time-kill curve analysis. The bacteriostatic effect became more pronounced when ETSK was used in combination with detergent (Triton X-100) or ATPase inhibitor (N, N′-dicyclohexylcarbodiimide). According to western blot analysis, the down-regulated expression of Penicillin-binding protein 2a (PBP2a) further validated that the bacterial activity was inhibited when treated with ETSK in a dose-dependent manner. Results based on our study verified that ETSK significantly suppressed MRSA infections and emphasized the potential application of ETSK as a novel anti-MRSA natural drug.  相似文献   

18.
Synergistic effects of ovine-derived cathelicidins SMAP29 and OaBac5mini with the antimicrobials polymyxin B, lysozyme, nisin and lactoferrin were investigated against E. coli O157:H7 and S. aureus 1056 MRSA. Lysozyme showed synergy against E. coli O157:H7 with SMAP29, polymyxin B and lactoferrin. Synergy was also found between SMAP29 and lactoferrin against this host. Against S. aureus 1056 MRSA, lysozyme showed synergy with OaBac5mini, polymyxin B and nisin, while synergy was also found between nisin and OaBac5mini and polymyxin B. Other combinations of the antimicrobials were either additive or non-synergistic.  相似文献   

19.
Otto M 《Cellular microbiology》2012,14(10):1513-1521
Methicillin‐resistant Staphylococcus aureus (MRSA) is one of the most frequent causes of hospital‐ and community‐associated infections. Resistance to the entire class of β‐lactam antibiotics, such as methicillin and penicillin, makes MRSA infections difficult to treat. Hospital‐associated MRSA strains are often multi‐drug‐resistant, leaving only lower efficiency drugs such as vancomycin as treatments options. Like many other S. aureus strains, MRSA strains produce a series of virulence factors, such as toxins and adhesion proteins. Recent findings have shed some new light on the molecular events that underlie MRSA epidemic waves. Newly emerging MRSA clones appear to have acquired phenotypic traits that render them more virulent or able to colonize better, either via mobile genetic elements or via adaptation of gene expression. Acquisition of Panton‐Valentine leukocidin genes and increased expression of core genome‐encoded toxins are being discussed as potentially contributing to the success of the recently emerged community‐associated MRSA strains. However, the molecular factors underlying the spread of hospital‐ and community‐associated MRSA strains are still far from being completely understood, a situation calling for enhanced research efforts in that area.  相似文献   

20.
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a large number of chronic infections due to its ability to form robust biofilms. Herein, the authors evaluated the anti-biofilm activity of a Staphylococcus specific chimeric lysin ClyH on MRSA biofilms. ClyH is known to be active against planktonic MRSA cells in vitro and in vivo. The minimum concentrations for biofilm eradication (MCBE) of ClyH were 6.2–50?mg?l?1, much lower than those of antibiotics. Scanning electron microscope (SEM) analysis revealed that ClyH eliminated MRSA biofilms through cell lytic activity in a time-dependent manner. Viable plate counts and kinetic analysis demonstrated that biofilms of different ages displayed varying susceptibility to ClyH. Together with previously demonstrated in vivo efficacy of ClyH against MRSA, the degradation efficacy against biofilms of different ages indicates that ClyH could be used to remove MRSA biofilms in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号