首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-sensitive potassium (KATP) channel is thought to play an important role in the protection of heart and brain against tissue hypoxia. The genetic regulation of the components of the channel by hypoxia has not been previously described. Here, we investigated the regulation of the two pore-forming channel proteins, Kir6.1 and Kir6.2, in response to hypoxia in vivo and in vitro. We find that these two structurally-related inwardly-rectifying potassium channel proteins are reciprocally regulated by hypoxia in vivo, with upregulation of Kir6.1 and down-regulation of Kir6.2, thereby resulting in a significant change in the composition of the channel complex in response to hypoxia. In vitro we describe neuronal and cardiac cell lines in which Kir6.1 is up-regulated by hypoxia, demonstrating that Kir6.1 is a hypoxia-inducible gene. We conclude that the heart and brain display genetic plasticity in response to hypoxic stress through specific genetic reprograming of cytoprotective channel genes.  相似文献   

2.
Molecular studies of the neuronal nicotinic acetylcholine receptor family   总被引:16,自引:0,他引:16  
Nicotinic acetylcholine receptors on neurons are part of a gene family that includes nicotinic acetylcholine receptors on skeletal muscles and neuronal alpha bungarotoxin-binding proteins that in many species, unlike receptors, do not have an acetylcholine-regulated cation channel. This gene superfamily of ligand-gated receptors also includes receptors for glycine and gamma-aminobutyric acid. Rapid progress on neuronal nicotinic receptors has recently been possible using monoclonal antibodies as probes for receptor proteins and cDNAs as probes for receptor genes. These studies are the primary focus of this review, although other aspects of these receptors are also considered. In birds and mammals, there are subtypes of neuronal nicotinic receptors. All of these receptors differ from nicotinic receptors of muscle pharmacologically (none bind alpha bungarotoxin, and some have very high affinity for nicotine), structurally (having only two types of subunits rather than four), and, in some cases, in functional role (some are located presynaptically). However, there are amino acid sequence homologies between the subunits of these receptors that suggest the location of important functional domains. Sequence homologies also suggest that the subunits of the proteins of this family all evolved from a common ancestral protein subunit. The ligand-gated ion channel characteristic of this superfamily is formed from multiple copies of homologous subunits. Conserved domains responsible for strong stereospecific association of the subunits are probably a fundamental organizing principle of the superfamily. Whereas the structure of muscle-type nicotinic receptors appears to have been established by the time of elasmobranchs and has evolved quite conservatively since then, the evolution of neuronal-type nicotinic receptors appears to be in more rapid flux. Certainly, the studies of these receptors are in rapid flux, with the availability of monoclonal antibody probes for localizing, purifying, and characterizing the proteins, and cDNA probes for determining sequences, localizing mRNAs, expressing functional receptors, and studying genetic regulation. The role of nicotinic receptors in neuromuscular transmission is well understood, but the role of nicotinic receptors in brain function is not. The current deluge of data using antibodies and cDNAs is beginning to come together nicely to describe the structure of these receptors. Soon, these techniques may combine with others to better reveal the functional roles of neuronal nicotinic receptors.  相似文献   

3.
The activity of trans-membrane proteins such as ion channels is the essence of neuronal transmission. The currently most accurate method for determining ion channel kinetic mechanisms is single-channel recording and analysis. Yet, the limitations and complexities in interpreting single-channel recordings discourage many physiologists from using them. Here we show that a genetic search algorithm in combination with a gradient descent algorithm can be used to fit whole-cell voltage-clamp data to kinetic models with a high degree of accuracy. Previously, ion channel stimulation traces were analyzed one at a time, the results of these analyses being combined to produce a picture of channel kinetics. Here the entire set of traces from all stimulation protocols are analysed simultaneously. The algorithm was initially tested on simulated current traces produced by several Hodgkin-Huxley–like and Markov chain models of voltage-gated potassium and sodium channels. Currents were also produced by simulating levels of noise expected from actual patch recordings. Finally, the algorithm was used for finding the kinetic parameters of several voltage-gated sodium and potassium channels models by matching its results to data recorded from layer 5 pyramidal neurons of the rat cortex in the nucleated outside-out patch configuration. The minimization scheme gives electrophysiologists a tool for reproducing and simulating voltage-gated ion channel kinetics at the cellular level.  相似文献   

4.
BACKGROUND: Advancing age is typically accompanied by deficits in learning and memory. These deficits occur independently of overt pathology and are often considered to be a part of "normal aging." At the neuronal level, normal aging is known to be associated with numerous cellular and molecular changes, which include a pronounced decrease in neuronal excitability and an altered induction in the threshold for synaptic plasticity. Because both of these mechanisms (neuronal excitability and synaptic plasticity) have been implicated as putative cellular substrates for learning and memory, it is reasonable to propose that age-related changes in these mechanisms may contribute to the general cognitive decline that occurs during aging. RESULTS: To further investigate the relationship between aging, learning and memory, neuronal excitability, and synaptic plasticity, we have carried out experiments with aged mice that lack the auxiliary potassium channel subunit Kvbeta1.1. In aged mice, the deletion of the auxiliary potassium channel subunit Kvbeta1.1 resulted in increased neuronal excitability, as measured by a decrease in the post-burst afterhyperpolarization. In addition, long-term potentiation (LTP) was more readily induced in aged Kvbeta1.1 knockout mice. Finally, the aged Kvbeta1.1 mutants outperformed age-matched controls in the hidden-platform version of the Morris water maze. Interestingly, the enhancements in excitability and learning were both sensitive to genetic background: The enhanced learning was only observed in a genetic background in which the mutants exhibited increased neuronal excitability. CONCLUSIONS: Neuronal excitability is an important determinant of both synaptic plasticity and learning in aged subjects.  相似文献   

5.
Epilepsy is a paroxysmal neurological disorder resulting from abnormal cellular excitability and is a common cause of disability. Recently, some forms of idiopathic epilepsy have been causally related to genetic mutations in neuronal ion channels. To understand disease mechanisms, it is crucial to understand how a gene defect can disrupt channel gating, which in turn can affect complex cellular dynamic processes. We develop a theoretical Markovian model of the neuronal Na+ channel NaV1.1 to explore and explain gating mechanisms underlying cellular excitability and physiological and pathophysiological mechanisms of abnormal neuronal excitability in the context of epilepsy. Genetic epilepsy has been shown to result from both mutations that give rise to a gain of channel function and from those that reduce the Na+ current. These data may suggest that abnormal excitation can result from both hyperexcitability and hypoexcitability, the mechanisms of which are presumably distinct, and as yet elusive. Revelation of the molecular origins will allow for translation into targeted pharmacological interventions that must be developed to treat syndromes resulting from divergent mechanisms. This work represents a first step in developing a comprehensive theoretical model to investigate the molecular mechanisms underlying runaway excitation that cause epilepsy.  相似文献   

6.
Ion channel hyperactivation can result in neuronal loss in injury, stroke and neurodegenerative disease. Acidosis-associated hyperactivation of the Degenerin/epithelial amiloride-sensitive Na(+) channel (DEG/ENaC) acid-sensing ion channel 1a (ASIC1a), a proton-gated channel expressed in the mammalian brain, contributes significantly to neuronal loss in ischemia. Analogously, in invertebrates, genetic hyperactivation of the Caenorhabditis elegans mechanosensory (MEC) channel (MEC-4(d)) of the DEG/ENaC ion channel superfamily induces neuronal necrosis. Similarly substituted MEC-10(d) mutant subunits of the same MEC channel are only marginally neurotoxic, and we therefore exploited the weak necrosis phenotype of mec-10(d) lines to screen for novel extragenic mutations that enhance neuronal death. Here, we report on one mec-10(d) necrosis enhancer, which we show is MEC-4 variant MEC-4(A149V). MEC-4(A149V) executes normal MEC-4 function in touch sensation and does not induce necrosis on its own, but rather combines with MEC-10(d) to create a strongly neurotoxic channel. The MEC-4(A149V)+MEC-10(d) channel conducts elevated Na(+) and Ca(2+) currents (with a disproportionate increase in Ca(2+) current) in the Xenopus oocyte expression system, and exhibits altered binding of the channel inhibitor amiloride. Our data document the first example of synergistically toxic intersubunit interactions in the DEG/ENaC channel class and provide evidence that Ca(2+) current levels may be decisive factors in tipping the balance between neuronal survival and necrosis.  相似文献   

7.
M Sheng  M L Tsaur  Y N Jan  L Y Jan 《Neuron》1992,9(2):271-284
In the mammalian nervous system, K+ channels regulate diverse aspects of neuronal function and are encoded by a large set of K+ channel genes. The roles of different K+ channel proteins could be dictated by their localization to specific subcellular domains. We report that two K+ channel polypeptides, Kv1.4 and Kv4.2, which form transient (A-type) K+ channels when expressed in Xenopus oocytes, are segregated in rat central neurons. Kv1.4 protein is targeted to axons and possibly terminals, while Kv4.2 is concentrated in dendrites and somata. This differential distribution implies distinct roles for these channel proteins in vivo. Their localizations suggest that Kv1.4 and Kv4.2 may regulate synaptic transmission via presynaptic, or postsynaptic mechanisms, respectively.  相似文献   

8.
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.  相似文献   

9.
The development of the nervous system involves the generation of a stunningly diverse array of neuronal subtypes that enable complex information processing and behavioral outputs. Deciphering how the nervous system acquires and interprets information and orchestrates behaviors will be greatly enhanced by the identification of distinct neuronal circuits and by an understanding of how these circuits are formed, changed, and/or maintained over time. Addressing these challenging questions depends in part on the ability to accurately identify and characterize the unique neuronal subtypes that comprise individual circuits. Distinguishing characteristics of neuronal subgroups include but are not limited to neurotransmitter phenotype, dendritic morphology, the identity of synaptic partners, and the expression of constellations of subgroup-specific proteins, including ion channel subtypes.  相似文献   

10.
Manipulation of neuronal activity through genetically targeted actuator molecules is a powerful approach for studying information flow in the brain. In these approaches the genetically targeted component, a receptor or a channel, is activated either by a small molecule (chemical genetics) or by light from a physical source (optogenetics). We developed a hybrid technology that allows control of the same neurons by both optogenetic and chemical genetic means. The approach is based on engineered chimeric fusions of a light-generating protein (luciferase) to a light-activated ion channel (channelrhodopsin). Ionic currents then can be activated by bioluminescence upon activation of luciferase by its substrate, coelenterazine (CTZ), as well as by external light. In cell lines, expression of the fusion of Gaussia luciferase to Channelrhodopsin-2 yielded photocurrents in response to CTZ. Larger photocurrents were produced by fusing the luciferase to Volvox Channelrhodopsin-1. This version allowed chemical modulation of neuronal activity when expressed in cultured neurons: CTZ treatment shifted neuronal responses to injected currents and sensitized neurons to fire action potentials in response to subthreshold synaptic inputs. These luminescent channelrhodopsins - or luminopsins – preserve the advantages of light-activated ion channels, while extending their capabilities. Our proof-of-principle results suggest that this novel class of tools can be improved and extended in numerous ways.  相似文献   

11.
Kv channel-interacting proteins (KChIPs) and neuronal calcium sensor-1 (NCS-1) have been shown to interact with Kv4 channel alpha-subunits to regulate the expression and/or gating of these channels. Here we examine the specificity and sites of these proteins for interaction with Kv channel proteins. Immunoprecipitation and green fluorescent protein imaging show that KChIPs (but not NCS-1) effectively bind to Kv4.3 protein and localize at the plasma membrane when channel proteins are coexpressed. Analysis with chimeric proteins between KChIP2 and NCS-1 reveals that the three regions of KChIP2 (the linker between the first and second EF hands, the one between the third and fourth EF hands, and the C-terminal peptide after the fourth EF hand) are necessary and sufficient for its effective binding to Kv4.3 protein. The chimera with these three KChIP2 portions slowed inactivation and facilitated recovery from inactivation of Kv4.3 current. These results indicate that the sequence difference in these three regions between KChIPs and NCS-1 determines the specificity and affinity for interaction with Kv4 protein. Because the three identified regions surround the large hydrophobic crevice based on the NCS-1 crystal structure, this crevice may be the association site of KChIPs for the channel protein.  相似文献   

12.
Sodium channels are key proteins in regulating neuronal excitability and accumulating data suggest that specific subtypes of voltage-dependent sodium channels are important in signaling various types of pain. Consistent with this theme, Jarvis et al (2007) recently reported the identification of a subtype-selective Nav1.8 blocker that was active in several pre-clinical models of pain. During the course of these studies compounds were also identified that showed large differences in potency when tested on Nav1.8 channels from different species. This Addendum illustrates one of these compounds along with the potency correlation between recombinant and native tetrodotoxin-resistant sodium channels for additional examples. These data show that significant differences can be observed for sodium channel blockers across species and highlight the importance of considering this possibility when searching for new compounds and research tools to probe sodium channel function.  相似文献   

13.
Anchoring proteins cluster receptors and ion channels at postsynaptic membranes in the brain. They also act as scaffolds for intracellular signaling molecules including synGAP and NO synthase. Here we report a new function for intracellular anchoring proteins: the regulation of synaptic ion channel function. A neuronal G protein-gated inwardly rectifying K(+) channel, Kir3.2c, can not be activated either by M(2)-muscarinic receptor stimulation or by G(betagamma) overexpression. When coexpressed with SAP97, a member of the PSD/SAP anchoring protein family, the channel became sensitive to G protein stimulation. Although the C-terminus of Kir3. 2c bound to the second PDZ domain of SAP97, functional analyses revealed that the guanylate kinase (GK) domain of SAP97 is crucial for sensitization of the Kir3.2c channel to G protein stimulation. Furthermore, SAPAP1/GKAP, which binds specifically to the GK domain of membrane-associated guanylate kinases, prevented the SAP97-induced sensitization. The function of a synaptic ion channel can therefore be controlled by a network of various intracellular proteins.  相似文献   

14.
Voltage-gated Na? (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na? conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca2?-free CaM at 2.2 ?. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.  相似文献   

15.
Sodium channels are key proteins in regulating neuronal excitability and accumulating data suggest that specific subtypes of voltage-dependent sodium channels are important in signaling various types of pain. Consistent with this theme, Jarvis et al.(7) recently reported the identification of a subtype-selective Na(v)1.8 blocker that was active in several pre-clinical models of pain. During the course of these studies compounds were also identified that showed large differences in potency when tested on Na(v)1.8 channels from different species. This addendum illustrates one of these compounds along with the potency correlation between recombinant and native tetrodotoxin-resistant sodium channels for additional examples. These data show that significant differences can be observed for sodium channel blockers across species and highlight the importance of considering this possibility when searching for new compounds and research tools to probe sodium channel function.  相似文献   

16.
To elucidate the molecular events involved in early ischemic neuronal death, we performed two-dimensional proteome profiling of primary cultures of rat cortical neurons following chemical ischemia induced by the administration of sodium azide under glucose-free conditions. Using a lactic dehydrogenase assay and Western blot analysis of dephosporylation of the voltage-gated potassium channel Kv2.1, we determined duration of chemical ischemia of 2 h to be the relevant time-point for early ischemic neuronal death. Sixty-one proteins were differentially expressed, and 26 different proteins were identified by MALDI-TOF with Mascot database searching. The proteome data indicated that chemical ischemia altered the expression of 20 proteins that are involved in stress response/chaperone, brain development, cytoskeletal/structural proteins, metabolic enzymes, and calcium ion homeostasis. Western blotting and immunocytochemical studies of the 6-most functionally significant proteins showed that, in the ischemia-treated group, the expression of glucose-related protein 78, heat shock protein 90 alpha, and α-enolase was significantly increased, while the expression of inositol triphosphate receptor 1 and ATP synthase beta subunit was decreased. In addition, the expression of dihydropyrimidinase-like 3 showed a truncated pattern in the ischemia group. The changes in the expression of these proteins might be significant indicators of early ischemic neuronal death.  相似文献   

17.
DING proteins are highly-conserved proteins with poorly-defined cell-signalling roles in mammals. Conserved homologues are also commonplace in plants, though not as yet functionally characterized. Poor availability of the proteins, and a lack of genetic structure, hamper progress in elucidating the roles of these eukaryotic DING proteins, but highly-homologous hypothetical DING proteins have recently been identified in Pseudomonas genomes. We have cloned and expressed a DING protein from P. fluorescens SWB25 in Escherichia coli. The recombinant protein, and its natural human homologue, act as phosphate-binding proteins, as predicted by structural homologies with other bacterial proteins. The recombinant protein also displays other functional similarities with mammalian DING proteins, in that, like the human version, it acts as a mitogen for cultured human cells, and can bind cotinine, known to be a binding ligand for a rat neuronal DING protein.  相似文献   

18.
Herrera JL  Fernandez C  Diaz M  Cury D  Marin R 《Steroids》2011,76(9):840-844
There is a wealth of information indicating that estradiol exerts rapid actions involved in neuroprotection and cognitive-enhancing effects. Some of these effects appear to delay onset, or even ameliorate, the neuropathology of Alzheimer's disease (AD), although some controversy exists about the beneficial brain effects of estrogen therapies. Therefore, it is crucial to better understand the mechanisms developed by 17β-estradiol to signal in the brain. At the neuronal membrane, the hormone can rapidly interact with estrogen receptors (mERs) or activate other receptors, such as G protein-coupled and ionotropic receptors. And the list of membrane signalling molecules modulated by estradiol in neurons is increasing. VDAC is a voltage-dependent anion channel, known as a mitochondrial porin which is also found at the neuronal membrane, where it appears to be involved in redox regulation, extrinsic apoptosis and amyloid beta neurotoxicity. Moreover, VDAC is present in neuronal lipid rafts, where it is associated with estrogen receptor α-like (mER), forming part of a macromolecular complex together with caveolin-1 and other signalling proteins related to neuronal preservation. Interestingly, we have recently found that 17β-estradiol rapidly promotes VDAC phosphorylation through the activation of protein kinase A (PKA) and Src-kinase, which may be relevant to maintain this channel inactivated. On the contrary, tamoxifen, a selective estrogen receptor modulator (SERM), provokes the dephosphorylation of VDAC, and eventually its opening, by activating a cascade of phosphatases, including protein phosphatase 2 (PP2A). This review will focus on the relevance of these novel findings in the alternative estrogen mechanisms to achieve neuroprotection related to AD.  相似文献   

19.
20.
Transient receptor potential vanilloid (TRPV) channels are part of the superfamily of TRP ion channels and play important roles in widespread physiological processes including both neuronal and non‐neuronal pathways. Various diseases such as skeletal abnormalities, chronic pain, and cancer are associated with dysfunction of a TRPV channel. In order to obtain full understanding of disease pathogenesis and create opportunities for therapeutic intervention, it is essential to unravel how these channels function at a molecular level. In the past decade, incredible progress has been made in biochemical sample preparation of large membrane proteins and structural biology techniques, including cryo‐electron microscopy. This has resulted in high resolution structures of all TRPV channels, which has provided novel insights into the molecular mechanisms of channel gating and regulation that will be summarized in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号