首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Normal fertilization and parthenogenesis of unfertilized eggs were observed in Laminaria angustata Kjellman by indirect immunofluorescence microscopy using a tubulin antibody. Sperm aster formation did not occur at plasmogamy. The centrosome of the egg gradually disappeared. Shortly after karyogamy, one centrosome reappeared near the zygote nucleus. During mitosis, the centrosome replicated and the daughter centrosomes migrated to opposite poles. The mitotic spindle was formed by microtubules that elongated from both poles. After the first cell division, each of the daughter cells received one centrosome that persisted throughout the development of the sporophyte. During parthenogenetic development, abnormal mono-, tri-, and multi-polar spindles were formed. These abnormal spindles caused abnormal nuclear and cytoplasmic division. Thus, cells were produced with 1) no nuclei, 2) multiple nuclei, 3) irregular numbers of chromosomes, and/or 4) no centrosomes. This is one of the reasons for the abortion and abnormal morphogenesis during parthenogenesis. Ultrastructural observations showed that, although cells of some parthogenetic sporophytes have centrioles, cells of almost all abnormally shaped parthenogenetic sporophytes lack centrioles. These results suggest that centrioles are required for normal centrosomal functions in Laminaria. Although centrioles are inherited paternally, some centrosomal material appears to be present or produced de novo in unfertilized eggs.  相似文献   

2.
The formation of the bipolar mitotic apparatus depends on accurate centrosome organization which is crucial for the separation of the genome during cell division. While it has been shown that mutations and overexpression of centrosome proteins (Brinkley and Goepfert, 1998; Pihan et al., 1998) can cause abnormal spindle pole formation, here we report that damages to centrosome structure caused by the chaotropic agent formamide will cause multipolar mitoses upon recovery from the effect when applied at first cell division in sea urchin eggs. Formamide was used as a chemical tool to manipulate centrosome structure and to investigate the effects on microtubule organization. When 1-1.5 m formamide was administered for 30 min at prometaphase of first cell division, microtubules were disassembled and centrosomes compacted into dense spheres around highly condensed chromatin. Upon recovery from formamide, centrosomes decompacted and attempted to form various mitotic organizations. Normal recovery (and attempts of recovery) to bipolarity was possible in five percent of cells treated with 1-1.5 m formamide for 30 min, but abnormal patterns of spindle formation were observed in all other cells, which included mono- (20%), tri (45%), and multipolar (30%) formations organized by mono-, tri-, and multipolar centrosome clusters. When cells were treated with 1.5 m formamide for 90 min, centrosomes became pulverized and fragmented and only monopolar mitotic formations were observed upon recovery. These results are highly reproducible and reveal that abnormalities in centrosome structure can lead to abnormal mitosis which is not caused by mutation or overexpression of centrosome proteins.  相似文献   

3.
In most animals, fertilized eggs inherit one centrosome from a meiosis-II spindle of oocytes and another centrosome from the sperm. However, since first proposed by Boveri [Sitzungsber. Ges. Morph. Phys. Münch. 3 (1887) 151-164] at the turn of the last century, it has been believed that only the paternal (sperm) centrosome provides the division poles for mitosis in animal zygotes. This uniparental (paternal) inheritance of centrosomes is logically based on the premise that the maternal (egg) centrosome is lost before the onset of the first mitosis. For the processes of the selective loss of the maternal centrosome, three models have been proposed: One stresses the intrinsic factors within the centrosome itself; the other two emphasize external factors such as cytoplasmic conditions or the sperm centrosome. In the present study, we have examined the validity of one of the models in which the sperm centrosome overwhelms the maternal centrosomes. Because centrosomes cast off into both the first and the second polar bodies (PB) are known to retain the capacity for reproduction and cell-division pole formation, we observed the behavior of those PB centrosomes with reproductive capacity and the sperm centrosome in the same zygotic cytoplasm. We prepared two kinds of fertilized eggs that contain reproductive maternal centrosomes, (1) by micromanipulative transplantation of the PB centrosomes into fertilized eggs, and (2) by suppression of the PB extrusions of fertilized eggs with cytochalasin B. In both types of eggs, the PB centrosomes could double and form cell-division poles, indicating that they are not suppressed by the sperm centrosome, which in turn indicates that selective loss of the maternal centrosome is due to intrinsic factors within the centrosomes themselves.  相似文献   

4.
Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.  相似文献   

5.
The influence of centrioles, derived from the sperm flagellar basal bodies, and the centrosomal material (MTOCs) on spindle formation in the brown alga Fucus distichus (oogamous) was studied by immunofluorescence microscopy using anti-centrin and anti-beta-tubulin antibodies. In contrast to a bipolar spindle, which is formed after normal fertilization, a multipolar spindle was formed in polyspermic zygote. The number of mitotic poles in polyspermic zygotes was double the number of sperm involved in fertilization. As an anti-centrin staining spot (centrioles) was located at these poles, the multipolar spindles in polyspermic zygotes were produced by the supplementary centrioles. When anucleate egg fragments were fertilized, chromosome condensation and mitosis did not occur in the sperm nucleus. Two anti-centrin staining spots could be detected, microtubules (MTs) radiated from nearby, but the mitotic spindle was never produced. When a single sperm fertilized multinucleate eggs (polygyny), abnormal spindles were also observed. In addition to two mitotic poles containing anti-centrin staining spots, extra mitotic poles without anti-centrin staining spots were also formed, and as a result multipolar spindles were formed. When karyogamy was blocked with colchicine, it became clear that the egg nucleus proceeded independently into mitosis accompanying chromosome condensation. A monoastral spindle could be frequently observed, and in rare cases a barrel-shaped spindle was formed. However, when a sperm nucleus was located near an egg nucleus, the two anti-centrin staining spots shifted to the egg nucleus from the sperm nucleus. In this case, a normal spindle was formed, the egg chromosomes arranged at the equator, and the associated MTs elongated from one pole of the egg spindle toward the sperm chromosomes which were scattered. From these results, it became clear that paternal centrioles derived from the sperm have a crucial role in spindle formation in the brown algae, such as they do during animal fertilization. However, paternal centrioles were not adequate for the functional centrosome during spindle formation. We speculated that centrosomal materials from the egg cytoplasm aggregate around the sperm centrioles and are needed for centrosomal activation.  相似文献   

6.
Tram U  Sullivan W 《Current biology : CB》2000,10(22):1413-1419
Background: In the majority of animals, the centrosome-the microtubule-organizing center of the cell-is assembled from components of both the sperm and the egg. How the males of the insect order Hymenoptera acquire centrosomes is a mystery, as they originate from virgin birth.Results: To address this issue, we observed centrosome, spindle and nuclear behavior in real time during early development in the parthenogenetic hymenopteran Nasonia vitripennis. Female meiosis was identical in unfertilized eggs. Centrosomes were assembled before the first mitotic division but were inherited differently in unfertilized and fertilized eggs. In both, large numbers of asters appeared at the cortex of the egg after completion of meiosis. In unfertilized eggs, the asters migrated inwards and two of them became stably associated with the female pronucleus and the remaining cytoplasmic asters rapidly disappeared. In fertilized eggs, the Nasonia sperm brought in paternally derived centrosomes, similar to Drosophila melanogaster. At pronuclear fusion, the diploid zygotic nucleus was associated only with paternally derived centrosomes. None of the cytoplasmic asters associated with the zygotic nucleus and, as in unfertilized eggs, they rapidly degenerated.Conclusions: Selection and migration of the female pronucleus is independent of the sperm and its aster. Unfertilized male eggs inherit maternal centrosomes whereas fertilized female eggs inherit paternal centrosomes. This is the first system described in which centrosomes are reciprocally inherited. The results suggest the existence of a previously undescribed mechanism for regulating centrosome number in the early embryo.  相似文献   

7.
The centrosome is a unique organelle that functions as the microtubule organizing center in most animal cells. During cell division, the centrosomes form the poles of the bipolar mitotic spindle. In addition, the centrosomes are also needed for cytokinesis. Each mammalian somatic cell typically contains one centrosome, which is duplicated in coordination with DNA replication. Just like the chromosomes, the centrosome is precisely reproduced once and only once during each cell cycle. However, it remains a mystery how this protein-based structure undergoes accurate duplication in a semiconservative manner. Intriguingly, amplification of the centrosome has been found in numerous forms of cancers. Cells with multiple centrosomes tend to form multipolar spindles, which result in abnormal chromosome segregation during mitosis. It has therefore been postulated that centrosome aberration may compromise the fidelity of cell division and cause chromosome instability. Here we review the current understanding of how the centrosome is assembled and duplicated. We also discuss the possible mechanisms by which centrosome abnormality contributes to the development of malignant phenotype.  相似文献   

8.
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.  相似文献   

9.
Centrosomes, the main microtubule-organizing centers (MTOCs) in most animal cells, are important for many cellular activities such as assembly of the mitotic spindle, establishment of cell polarity, and cell movement. In nuclear transfer (NT), MTOCs that are located at the poles of the meiotic spindle are removed from the recipient oocyte, while the centrosome of the donor cell is introduced. We used mouse MII oocytes as recipients, mouse fibroblasts, rat fibroblasts, or pig granulosa cells as donor cells to construct intraspecies and interspecies nuclear transfer embryos in order to observe centrosome dynamics and functions. Three antibodies against centrin, gamma-tubulin, and NuMA, respectively, were used to stain the centrosome. Centrin was not detected either at the poles of transient spindles or at the poles of first mitotic spindles. gamma-tubulin translocated into the two poles of the transient spindles, while no accumulated gamma-tubulin aggregates were detected in the area adjacent to the two pseudo-pronuclei. At first mitotic metaphase, gamma-tubulin was translocated to the spindle poles. The distribution of gamma-tubulin was similar in mouse intraspecies and rat-mouse interspecies embryos. The NuMA antibody that we used can recognize porcine but not murine NuMA protein, so it was used to trace the NuMA protein of donor cell in reconstructed embryos. In the pig-mouse interspecies reconstructed embryos, NuMA concentrated between the disarrayed chromosomes soon after activation and translocated to the transient spindle poles. NuMA then immigrated into pseudo-pronuclei. After pseudo-pronuclear envelope breakdown, NuMA was located between the chromosomes and then translocated to the spindle poles of first mitotic metaphase. gamma-tubulin antibody microinjection resulted in spindle disorganization and retardation of the first cell division. NuMA antibody microinjection also resulted in spindle disorganization. Our findings indicate that (1) the donor cell centrosome, defined as pericentriolar material surrounding a pair of centrioles, is degraded in the 1-cell reconstituted embryos after activation; (2) components of donor cell centrosomes contribute to the formation of the transient spindle and normal functional mitotic spindle, although the contribution of centrosomal material stored in the recipient ooplasm is not excluded; and (3) components of donor cell centrosomes involved in spindle assembly may not be species-specific.  相似文献   

10.
Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.  相似文献   

11.
Chlamydiae are Gram negative, obligate intracellular bacteria, and Chlamydia trachomatis is the etiologic agent of the most commonly reported sexually transmitted disease in the United States. Chlamydiae undergo a biphasic life cycle that takes place inside a parasitophorous vacuole termed an inclusion. Chlamydial infections have been epidemiologically linked to cervical cancer in patients previously infected by human papillomavirus (HPV). The inclusion associates very closely with host cell centrosomes, and this association is dependent upon the host motor protein dynein. We have previously reported that this interaction induces supernumerary centrosomes in infected cells, leading to multipolar mitotic spindles and inhibiting accurate chromosome segregation. Our findings demonstrate that chlamydial infection causes mitotic spindle defects independently of its effects on centrosome amplification. We show that chlamydial infection increases centrosome spread and inhibits the spindle assembly checkpoint delay to disrupt centrosome clustering. These data suggest that chlamydial infection exacerbates the consequences of centrosome amplification by inhibiting the cells' ability to suppress the effects of these defects on mitotic spindle organization. We hypothesize that these combined effects on mitotic spindle architecture identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation.  相似文献   

12.
It is believed that in most animals only the paternal centrosome provides the division poles for mitosis in zygotes. This paternal inheritance of the centrosomes depends on the selective loss of the maternal centrosome. In order to understand the mechanism of centrosome inheritance, the behavior of all maternal centrosomes/centrioles was investigated throughout the meiotic and mitotic cycles by using starfish eggs that had polar body (PB) formation suppressed. In starfish oocytes, the centrioles do not duplicate during meiosis II. Hence, each centrosome of the meiosis II spindle has only one centriole, whereas in meiosis I, each has a pair of centrioles. When two pairs of meiosis I centrioles were retained in the cytoplasm of oocytes by complete suppression of PB extrusion, they separated into four single centrioles in meiosis II. However, after completion of the meiotic process, only two of the four single centrioles were found in addition to the pronucleus. When the two single centrioles of a meiosis II spindle were retained in the oocyte cytoplasm by suppressing the extrusion of the second PB, only one centriole was found with the pronucleus after the completion of the meiotic process. When these PB-suppressed eggs were artificially activated to drive the mitotic cycles, all the surviving single centrioles duplicated repeatedly to form pairs of centrioles, which could organize mitotic spindles. These results indicate that the maternal centrioles are not equivalent in their intrinsic stability and reproductive capacity. The centrosomes with the reproductive centrioles are selectively cast off into the PBs, resulting in the mature egg inheriting a nonreproductive centriole, which would degrade shortly after the completion of meiosis.  相似文献   

13.
Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.  相似文献   

14.
The centrosome cycle in the mitotic cycle of sea urchin eggs   总被引:6,自引:0,他引:6  
When sea urchin eggs entering mitosis are exposed to an appropriate concentration of mercaptoethanol, the chromosome cycle is restrained while the centrosome cycle advances. The two poles of the mitotic apparatus separate into four poles, while the chromosomes remain in their metaphase arrangements until released by the removal of the mercaptoethanol. We follow the centrosomes through the stages of the generation of two poles by each original pole. In electron microscopic studies, the osmiophilic component of the centrosomes serves as an indicator of their changing forms as each pole generates two poles. In light microscopic studies, including observations of birefringence, the shapes of the polar ends of the spindles are taken as indicators of the shapes of the centrosomes. The successive stages of the centrosome cycle are (1) compact spherical centrosomes at the time of formation of the mitotic apparatus; (2) expansion and flattening of the centrosomes, leading to (3) formation of thin flat plates, perpendicular to the spindle axis. Corresponding to the extended flat shape of the centrosomes, the spindle poles are flat; microtubules 'point' to the centrosomal plate and not the centrioles. The centrioles are separated in the flattening of the centrosomes. (4) The flat plate divides into two and each of the two halves becomes more compact, defining two separate poles. Our findings resurrect and update Boveri's [5] observations and interpretations of the centrosome. Centrosomes have shapes. The shapes may be imparted to the microtubular structures that they generate. The formation of two separate centrosomes from one, in the formation of mitotic poles, is describable as a sequence of changes in shape.  相似文献   

15.
In vertebrate somatic cells, the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles, such as plant cells and many oocytes, bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization, both before and after nuclear envelope breakdown (NEB), is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.Key words: centrosome, centriole, mitosis, spindle, cell cycle, meiosis, plant cell, microsurgery  相似文献   

16.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

17.
In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.  相似文献   

18.
Cytokinesis partitions a centrosome to each daughter cell at cell division that will duplicate and assemble a bipolar spindle in the subsequent M phase. Cytokinesis is incomplete in proliferating germ cells in Drosophila and cytoplasmic channels connect sibling germ cells. Although centrosomes are essential to male fertility, the molecular mechanism that retains centrosomes in parental germ cells is not known. Cortical cytoplasmic structures known as fusomes extend through ring canals and connect cells within the cyst. Fusome assembly in males requires function of hu-li tai-shao (hts), an adducin like protein found in fusomes and in the cortical membrane cytoskeleton of somatic cells. This work used immunological and cytological methods to place hts mutants in an allelic series. Male fertile hts mutants express hts protein and generate apparently normal or fragmented fusomes. A male sterile allele does not express hts protein or show fusome structures. Gonial cells in all hts mutants showed 2 centrosomes and mitotic spindles were bipolar. Yet, primary spermatocytes, with and without fusome structures, frequently contained too many or too few centrosomes. Although spindle structures were not found in spermatocytes without centrosomes, meiotic spermatocytes with centrosomes generated bipolar, monopolar, and multipolar spindles. Collectively, these results indicate that hts function is necessary for centrosome inheritance in spermatocytes as well as for male fertility.  相似文献   

19.
Unfertilized eggs commonly lack centrioles, which are usually provided by the male gamete at fertilization, and are unable to assemble functional reproducing centrosomes. However, some insect species lay eggs that develop to adulthood without a contribution from sperm. We report that the oocyte of the parthenogenetic collembolan Folsomia candida is able to self-assemble microtubule-based asters in the absence of pre-existing maternal centrosomes. The asters, which develop near the innermost pole of the meiotic apparatus, interact with the female chromatin to form the first mitotic spindle. The appearance of microtubule-based asters in the cytoplasm of the activated Folsomia oocyte might represent a conserved mechanism for centrosome formation during insect parthenogenesis. We also report that the architecture of the female meiotic apparatus and the structure of the mitotic spindles during the early embryonic divisions are unusual in comparison with that of insects.This work was made possible by grants from PAR (University of Siena) and PRIN to G.C.  相似文献   

20.
Procaine-treated eggs can be penetrated by more than one spermatozoon. Supernumerary male pronuclei can fuse with the female one giving raise to multipolar spindles or remain isolated within the egg's cytoplasm forming their own spindle. In all types of multiple mitotic figures (asters and spindles) the distribution of asters is equidistant either uniplanar or at maximum distance like at the apices of a polyhedron. Astral rays are not different from spindle fibers: they can attach to and attract chromosomes of "foreign" mitotic figures. When several mitotic figures are present in one egg, the partner asters are always of the same size, and microtubules of one aster never interdigitate with those of others. The hypothesis that positioning of centrosomes is brought about by spreading of a centrosome organizer in the form of an expanding calotte on the surface of the nucleus (Mazia, D., Int. Rev. Cytol. 100, 49-92 (1987)) is supported by a computer model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号