首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
Atrial fibrosis induced by aging is one of the main causes of atrial fibrillation (AF), but the potential molecular mechanism is not clear. Acetyltransferase p300 participates in the cellular senescence and fibrosis, which might be involved in the age-related atrial fibrosis. Four microarray datasets generated from atrial tissue of AF patients and sinus rhythm (SR) controls were analyzed to find the possible relationship of p300 (EP300) with senescence and fibrosis. And then, biochemical assays and in vivo electrophysiological examination were performed on older AF patients, aging mice, and senescent atrial fibroblasts. The results showed that (1) the left atrial tissues of older AF patients, aging mouse, and senescence human atrial fibroblasts had more severe atrial fibrosis and higher protein expression levels of p300, p53/acetylated p53 (ac-p53)/p21, Smad3/p-Smads, and fibrosis-related factors. (2) p300 inhibitor curcumin and p300 knockdown treated aging mouse and senescence human atrial fibroblasts reduced the senescence ratio of atrial fibroblasts, ameliorated the atrial fibrosis, and decreased the AF inducibility. In contrast, over-expression of p300 can lead to the senescence of atrial fibroblasts and atrial fibrosis. (3) p53 knockdown decreased the expression of aging and fibrosis-related proteins. (4) Co-immunoprecipitation and immunofluorescence showed that p53 forms a complex with smad3 and directly regulates the expression of smad3 in atrial fibroblasts. Our findings suggest that the mechanism of atrial fibrosis induced by aging is, at least, partially dependent on the regulation of p300, which provides new sights into the AF treatment, especially for the elderly.  相似文献   

2.
AIMS: Atrial angiotensin II (ANG II) levels have been shown to be increased in atrial fibrillation (AF). The purpose of the study was to evaluate a potential role of ANG II in the early remodeling and susceptibility to chronicization of AF. METHODS AND RESULTS: Isolated human atrial myocytes were incubated in ANG II and/or angiotensin type 1 receptor blocker candesartan. ANG II markedly increased the frequency of spontaneous Ca(2+) sparks, spark full duration, time to peak Ca(2+) fluorescence and decay time measured by confocal imaging. Sarcoplasmic reticulum calcium content estimated by caffeine-evoked calcium release did not differ between ANG II-treated cells and controls. Patch-clamp recordings revealed that ANG II significantly decreased I(to) and increased I(Ca,L) current densities. Candesartan blocked these ANG II-mediated alterations. ANG II exhibited no effect on I(K1), I(Kur) and I(f) current size. Expression of connexin 40 and connexin 43 was not significantly changed by ANG II as assessed by immunohistochemistry and Western blot analysis. CONCLUSION: ANG II-induced alterations of calcium handling and electrophysiological changes in human atrial cells similar to those previously observed in the onset of AF. Prevention of these alterations by candesartan might constitute a useful pharmacological strategy for the treatment of AF.  相似文献   

3.
The role of atrial dilatation in the domestication of atrial fibrillation   总被引:7,自引:0,他引:7  
Numerous clinical investigations as well as recent experimental studies have demonstrated that atrial fibrillation (AF) is a progressive arrhythmia. With time paroxysmal AF becomes persistent and the success rate of cardioversion of persistent AF declines. Electrical remodeling (shortening of atrial refractoriness) develops within the first days of AF and contributes to the increase in stability of the arrhythmia. However, ‘domestication of AF’ must also depend on other mechanisms since the persistence of AF continues to increase after electrical remodeling has been completed. During the first days of AF in the goat, electrical and contractile remodeling (loss of atrial contractility) followed exactly the same time course suggesting that they are due to the same underlying mechanism. Contractile remodeling not only enhances the risk of atrial thrombus formation, it also enhances atrial dilatation by increasing the compliance of the fibrillating atrium. In goats with chronic AV-block atrial dilatation increased the duration of artificially induced AF-episodes but did not change atrial refractoriness or the AF cycle length. When AF was maintained a couple of days in these animals, a shortening of the atrial refractory period did occur. However, the AF cycle length did not decrease. Long lasting episodes of AF with a long AF cycle length and a wide excitable gap suggest that in this model AF is mainly promoted by conduction disturbances. Chronic atrial stretch induces activation of numerous signaling pathways leading to cellular hypertrophy, fibroblast proliferation and tissue fibrosis. The resulting electroanatomical substrate in dilated atria is characterized by increased non-uniform anisotropy and macroscopic slowing of conduction, promoting reentrant circuits in the atria. Prevention of electroanatomical remodeling by blockade of pathways activated by chronic atrial stretch therefore provides a promising strategy for future treatment of AF.  相似文献   

4.
Slowly inactivating Na+ channels conducting “late” Na+ current (INa,late) contribute to ventricular arrhythmogenesis under pathological conditions. INa,late was also reported to play a role in chronic atrial fibrillation (AF). The objective of this study was to investigate INa,late in human right atrial cardiomyocytes as a putative drug target for treatment of AF. To activate Na+ channels, cardiomyocytes from transgenic mice which exhibit INa,late (ΔKPQ), and right atrial cardiomyocytes from patients in sinus rhythm (SR) and AF were voltage clamped at room temperature by 250-ms long test pulses to -30 mV from a holding potential of -80 mV with a 100-ms pre-pulse to -110 mV (protocol I). INa,late at -30 mV was not discernible as deviation from the extrapolated straight line IV-curve between -110 mV and -80 mV in human atrial cells. Therefore, tetrodotoxin (TTX, 10 μM) was used to define persistent inward current after 250 ms at -30 mV as INa,late. TTX-sensitive current was 0.27±0.06 pA/pF in ventricular cardiomyocytes from ΔKPQ mice, and amounted to 0.04±0.01 pA/pF and 0.09±0.02 pA/pF in SR and AF human atrial cardiomyocytes, respectively. With protocol II (holding potential -120 mV, pre-pulse to -80 mV) TTX-sensitive INa,late was always larger than with protocol I. Ranolazine (30 μM) reduced INa,late by 0.02±0.02 pA/pF in SR and 0.09±0.02 pA/pF in AF cells. At physiological temperature (37°C), however, INa,late became insignificant. Plateau phase and upstroke velocity of action potentials (APs) recorded with sharp microelectrodes in intact human trabeculae were more sensitive to ranolazine in AF than in SR preparations. Sodium channel subunits expression measured with qPCR was high for SCN5A with no difference between SR and AF. Expression of SCN8A and SCN10A was low in general, and lower in AF than in SR. In conclusion, We confirm for the first time a TTX-sensitive current (INa,late) in right atrial cardiomyocytes from SR and AF patients at room temperature, but not at physiological temperature. While our study provides evidence for the presence of INa,late in human atria, the potential of such current as a target for the treatment of AF remains to be demonstrated.  相似文献   

5.
Research has indicated that atrial fibrillation (AF) ablation failure is related to the presence of atrial fibrosis. However it remains unclear whether this information can be successfully used in predicting the optimal ablation targets for AF termination. We aimed to provide a proof-of-concept that patient-specific virtual electrophysiological study that combines i) atrial structure and fibrosis distribution from clinical MRI and ii) modeling of atrial electrophysiology, could be used to predict: (1) how fibrosis distribution determines the locations from which paced beats degrade into AF; (2) the dynamic behavior of persistent AF rotors; and (3) the optimal ablation targets in each patient. Four MRI-based patient-specific models of fibrotic left atria were generated, ranging in fibrosis amount. Virtual electrophysiological studies were performed in these models, and where AF was inducible, the dynamics of AF were used to determine the ablation locations that render AF non-inducible. In 2 of the 4 models patient-specific models AF was induced; in these models the distance between a given pacing location and the closest fibrotic region determined whether AF was inducible from that particular location, with only the mid-range distances resulting in arrhythmia. Phase singularities of persistent rotors were found to move within restricted regions of tissue, which were independent of the pacing location from which AF was induced. Electrophysiological sensitivity analysis demonstrated that these regions changed little with variations in electrophysiological parameters. Patient-specific distribution of fibrosis was thus found to be a critical component of AF initiation and maintenance. When the restricted regions encompassing the meander of the persistent phase singularities were modeled as ablation lesions, AF could no longer be induced. The study demonstrates that a patient-specific modeling approach to identify non-invasively AF ablation targets prior to the clinical procedure is feasible.  相似文献   

6.
Chronic atrial fibrillation (AF) is a complex disease with underlying changes in electrophysiology, calcium signaling and the structure of atrial myocytes. How these individual remodeling targets and their emergent interactions contribute to cell physiology in chronic AF is not well understood. To approach this problem, we performed in silico experiments in a computational model of the human atrial myocyte. The remodeled function of cellular components was based on a broad literature review of in vitro findings in chronic AF, and these were integrated into the model to define a cohort of virtual cells. Simulation results indicate that while the altered function of calcium and potassium ion channels alone causes a pronounced decrease in action potential duration, remodeling of intracellular calcium handling also has a substantial impact on the chronic AF phenotype. We additionally found that the reduction in amplitude of the calcium transient in chronic AF as compared to normal sinus rhythm is primarily due to the remodeling of calcium channel function, calcium handling and cellular geometry. Finally, we found that decreased electrical resistance of the membrane together with remodeled calcium handling synergistically decreased cellular excitability and the subsequent inducibility of repolarization abnormalities in the human atrial myocyte in chronic AF. We conclude that the presented results highlight the complexity of both intrinsic cellular interactions and emergent properties of human atrial myocytes in chronic AF. Therefore, reversing remodeling for a single remodeled component does little to restore the normal sinus rhythm phenotype. These findings may have important implications for developing novel therapeutic approaches for chronic AF.  相似文献   

7.
Atrial Fibrillation (AF), the most common sustained arrhythmia, has a strong genetic component, but the mechanism by which common genetic variants lead to increased AF susceptibility is unknown. Genome-wide association studies (GWAS) have identified that the single nucleotide polymorphisms (SNPs) most strongly associated with AF are located on chromosome 4q25 in an intergenic region distal to the PITX2 gene. Our objective was to determine whether the AF-associated SNPs on chromosome 4q25 were associated with PITX2c expression in adult human left atrial appendages. Analysis of a lone AF GWAS identified four independent AF risk SNPs at chromosome 4q25. Human adult left atrial appendage tissue was obtained from 239 subjects of European Ancestry and used for SNP analysis of genomic DNA and determination of PITX2c RNA expression levels by quantitative PCR. Subjects were divided into three groups based on their history of AF and pre-operative rhythm. AF rhythm subjects had higher PITX2c expression than those with history of AF but in sinus rhythm. PITX2c expression was not associated with the AF risk SNPs in human adult left atrial appendages in all subjects combined or in each of the three subgroups. However, we identified seven SNPs modestly associated with PITX2c expression located in the introns of the ENPEP gene, ∼54 kb proximal to PITX2. PITX2c expression in human adult left atrial appendages is not associated with the chromosome 4q25 AF risk SNPs; thus, the mechanism by which these SNPs are associated with AF remains enigmatic.  相似文献   

8.
Beat shock proteins and atrial fibrillation   总被引:1,自引:0,他引:1       下载免费PDF全文
In this mini-review, the role of heat shock proteins in susceptability to induction of atrial fibrillation (AF) or in the process of AF is discussed. AF is the most common arrhythmia in humans, is self-perpetuating in nature and hence tends to become more persistent in time. Some studies show a correlation between high Hsp70 (HspA1A) expression in cardiac tissue and a reduced susceptability to induction of postoperative AF. Expression of Hsp70, Hsc70 (HspA8), Hsp40 (DnaJB1), Hsp60 (HspD1), Hsp90 (HspC1) was not associated with progression of AF. However, both correlative studies in human and experimental studies suggest that Hsp27 (HspB1) may delay progression of AF to the more permanent forms and hence Hsp27 might be referred to as a "Beat shock protein".  相似文献   

9.
Rapid atrial pacing causes electrical remodeling that leads to atrial fibrillation (AF). AF can further remodel atrial electrophysiology to maintain AF. Our previous studies showed that there was a marked difference in the duration of AF in dogs that have been atrial paced at 400 beats/min for 6 wk. We hypothesized that this difference is based on the changes in the degree of electrical remodeling caused by rapid atrial pacing versus that by AF. Right atrial cells were isolated from control dogs (Con, N = 28), from dogs with chronic AF (cAF dogs, N = 13, episodes lasting at least 6 days), or from dogs with nonsustained or brief episodes of AF (nAF dogs, N = 10, episodes lasting minutes to hours). Both transient outward (Ito) and sustained outward K+ current (Isus) densities/functions were determined using whole cell voltage-clamp techniques. In nAF cells, Ito density was reduced by 69% at +40 mV: from 7.1 +/- 0.5 pA/pF (Con, n = 59) to 2.2 +/- 0.2 pA/pF (nAF, n = 24) (P < 0.05). The voltage dependence of inactivation of Ito was shifted positively and decay kinetics were changed; however, recovery from inactivation was not altered in nAF cells. In contrast, Ito density in cAF cells was both significantly different from Con cells and larger than that in nAF cells [at +40 mV, 3.5 +/- 0.3 pA/pF (cAF, n = 29), P < 0.05]. In cAF cells, recovery from inactivation and decay of Ito were both slow; yet, voltage dependence inactivation of Ito approached that of Con cells. Furthermore, "recovered" Ito of cAF cells was more sensitive to tetraethylammonium than currents of Con and nAF cells. Isus densities of nAF and cAF cells did not differ. Both nAF and cAF cells have reduced Ito versus Con cells, but Ito remodeling of nAF cells differed from that of cAF cells. Ito in cAF dogs was likely remodeled by AF per se, whereas that in nAF dogs was likely the consequence of the rapid rate in the absence of sustained AF.  相似文献   

10.
11.
Chronic rapid atrial pacing (RAP) leads to changes that perpetuate atrial fibrillation (AF). Chronic atrial dilatation due to mitral regurgitation (MR) also increases AF inducibility, but it is not clear whether the underlying mechanism is similar. Therefore, we have investigated atrial electrophysiology in a canine MR model (mitral valve avulsion, 1 mo) using high-resolution optical mapping and compared it with control dogs and with the canine RAP model (6-8 wk of atrial pacing at 600 beats/min, atrioventricular block, and ventricular pacing at 100 beats/min). At followup, optical action potentials were recorded using a 16 x 16 photodiode array from 2 x 2-cm left atrial (LA) and right atrial (RA) areas in perfused preparations, with pacing electrodes around the field of view to study direction dependency of conduction. Action potential duration at 80% repolarization (APD(80)) was not different between control and MR but was reduced in RAP atria. Conduction velocities during normal pacing were not different between groups. However, the MR LA showed increased conduction heterogeneity during pacing at short cycle lengths and during premature extrastimuli, which frequently caused pronounced regional conduction slowing. Conduction in the MR LA during extrastimulation also displayed a marked dependence on propagation direction. These phenomena were not observed in the MR RA and in control and RAP atria. Thus both models form distinctly different AF substrates; in RAP dogs, the decrease in APD(80) may stabilize reentry. In MR dogs, regional LA conduction slowing and increased directional dependency, allowing unidirectional conduction block and preferential paths of conduction, may account for increased AF inducibility.  相似文献   

12.
BackgroundAtrial electrical and structural remodelling in older individuals with cardiovascular risk factors has been associated with changes in surface electrocardiographic (ECG) parameters (e.g., prolongation of the PR interval) and higher risks of atrial fibrillation (AF). However, it has been difficult to establish whether altered ECG parameters are the cause or a consequence of the myocardial substrate leading to AF. This study aimed to examine the potential causal relevance of ECG parameters on risk of AF using mendelian randomisation (MR).Methods and findingsWeighted genetic scores explaining lifelong differences in P-wave duration, PR interval, and QT interval were constructed, and associations between these ECG scores and risk of AF were estimated among 278,792 UK Biobank participants (mean age: 57 years at recruitment; 19,132 AF cases). The independent genetic variants contributing to each of the separate ECG scores, and their corresponding weights, were based on published genome-wide association studies. In UK Biobank, genetic scores representing a 5 ms longer P-wave duration or PR interval were significantly associated with lower risks of AF (odds ratio [OR] 0.91; 95% confidence interval [CI]: 0.87–0.96, P = 2 × 10−4 and OR 0.94; 95% CI: 0.93–0.96, P = 2 × 10−19, respectively), while longer QT interval was not significantly associated with AF. These effects were independently replicated among a further 17,931 AF cases from the AFGen Consortium. Investigation of potential mechanistic pathways showed that differences in ECG parameters associated with specific ion channel genes had effects on risk of AF consistent with the overall scores, while the overall scores were not associated with changes in left atrial size. Limitations of the study included the inherent assumptions of MR, restriction to individuals of European ancestry, and possible restriction of results to the normal ECG ranges represented in UK Biobank.ConclusionsIn UK Biobank, we observed evidence suggesting a causal relationship between lifelong differences in ECG parameters (particularly PR interval) that reflect longer atrial conduction times and a lower risk of AF. These findings, which appear to be independent of atrial size and concomitant cardiovascular comorbidity, support the relevance of varying mechanisms underpinning AF and indicate that more individualised treatment strategies warrant consideration.

In a Mendelian randomization analysis, Parag Gajendragadkar and colleagues investigate associations between genetically-predicted EEG parameters and risk of atrial fibrillation among UK Biobank participants.  相似文献   

13.
Atrial fibrillation (AF) is the most common cause of arrhythmia and is an aging-related disease encountered in clinical practice. The electrophysiological remolding with Ca(2+) overloading and cellular structure changes were found in cardiomyocytes of AF patients. In previous studies, increased oxidative stress and oxidative damage was found in cardiomyocytes during the ischemia/reperfusion injury. Besides, mitochondrial DNA (mtDNA) deletion and mtDNA proliferation occur frequently in affected tissues of patients with certain degenerative diseases and during aging of the human. However, it remains unclear whether high oxidative stress and alteration of mtDNA play a role in the pathophysiology of AF. In this study, we first screened for large-scale deletions of mtDNA in the atrial muscle of AF patients by long-range polymerase chain reaction (PCR). The results showed that large-scale deletions between nucleotide positions 7900 and 16500 of mtDNA occurred at a high frequency. Among them, the 4977 bp deletion was the most frequent and abundant one, and the mean proportion of mtDNA with the 4977 bp deletion in the atrial muscle of the patients with AF was 3.75-fold higher than that of the patients without AF (p <.005). Furthermore, quantitative PCR was performed to evaluate lesions in mtDNA caused by oxidative damage. We found that the degree of mtDNA damage in the patients with AF was greater than that of the patients without AF (3.29 vs.1.60 per 10 kb, p <.0005). The 8-OHdG, which is one of the most common products of oxidative damage to DNA, was also found at a higher frequency in mtDNA of patients with AF as compared with those without AF. In addition, the mtDNA content was found to increase significantly in the patients with AF (p =.0051). The level of mtDNA lesion and the mtDNA content was positively correlated (r = 0.44). These results suggest that oxidative injury and deletion of mtDNA in cardiac muscle are increased in the patients with AF, which may contribute to the impairment of bioenergetic function of mitochondria and induction of the oxidative vicious cycle involved in the pathogenesis of atrial myopathy in AF.  相似文献   

14.
Atrial fibrillation (AF) induces a progressive dilatation of the atria which in turn might promote the arrhythmia. The mechanism of atrial dilatation during AF is not known. To test the hypothesis that loss of atrial contractile function is a primary cause of atrial dilatation during the first days of AF, eight goats were chronically instrumented with epicardial electrodes, a pressure transducer in the right atrium, and piezoelectric crystals to measure right atrial diameter. AF was induced with the use of repetitive burst pacing. Atrial contractility was assessed during sinus rhythm, atrial pacing (160-, 300-, and 400-ms cycle length), and electrically induced AF. The compliance of the fibrillating right atrium was measured during unloading the atria with diuretics and loading with 1 liter of saline. All measurements were repeated after 6, 12, and 24 h of AF and then once a day during the first 5 days of AF. Recovery of the observed changes after spontaneous cardioversion was also studied. After 5 days of AF, atrial contractility during sinus rhythm or slow atrial pacing was greatly reduced. During rapid pacing (160 ms) or AF, the amplitude of the atrial pressure waves had declined to 20% of control. The compliance of the fibrillating atria increased twofold, whereas the right atrial pressure was unchanged. As a result, the mean right atrial diameter increased by approximately 12%. All changes were reversible within 3 days of sinus rhythm. We conclude that atrial dilatation during the first days of AF is due to an increase in atrial compliance caused by loss of atrial contractility during AF. Atrial compliance and size are restored when atrial contractility recovers after cardioversion of AF.  相似文献   

15.
Sarcolipin (SLN), a key regulator of cardiac sarco(endo)plasmic reticulum (SR) Ca2+ ATPase, is predominantly expressed in atria and mediates β-adrenergic responses. Studies have shown that SLN mRNA expression is decreased in human chronic atrial fibrillation (AF) and in aortic banded mouse atria; however, SLN protein expression in human atrial pathology and its role in atrial SR Ca2+ uptake are not yet elucidated. In the present study, we determined the expression of major SR Ca2+ handling proteins in atria of human AF patients and in human and in a mouse model of heart failure (HF). We found that the expression of SR Ca2+ uptake and Ca2+ release channel proteins are significantly decreased in atria but not in the ventricles of pressure-overload induced HF in mice. In human AF and HF, the expression of SLN protein was significantly decreased; whereas the expressions of other major SR Ca2+ handling proteins were not altered. Further, we found that the SR Ca2+ uptake was significantly increased in human AF. The selective downregulation of SLN and enhanced SR Ca2+ uptake in human AF suggest that SLN downregulation could play an important role in abnormal intracellular Ca2+ cycling in atrial pathology.  相似文献   

16.
Sarcolipin (SLN), a key regulator of cardiac sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase, is predominantly expressed in atria and mediates β-adrenergic responses. Studies have shown that SLN mRNA expression is decreased in human chronic atrial fibrillation (AF) and in aortic banded mouse atria; however, SLN protein expression in human atrial pathology and its role in atrial SR Ca(2+) uptake are not yet elucidated. In the present study, we determined the expression of major SR Ca(2+) handling proteins in atria of human AF patients and in human and in a mouse model of heart failure (HF). We found that the expression of SR Ca(2+) uptake and Ca(2+) release channel proteins are significantly decreased in atria but not in the ventricles of pressure-overload induced HF in mice. In human AF and HF, the expression of SLN protein was significantly decreased; whereas the expressions of other major SR Ca(2+) handling proteins were not altered. Further, we found that the SR Ca(2+) uptake was significantly increased in human AF. The selective downregulation of SLN and enhanced SR Ca(2+) uptake in human AF suggest that SLN downregulation could play an important role in abnormal intracellular Ca(2+) cycling in atrial pathology.  相似文献   

17.

Background

Pulmonary hypertension (PH) is associated with progressive impairment of right ventricular function, reduced exercise capacity and a poor prognosis. Little is known about the prevalence, clinical manifestation and impact of atrial fibrillation (AF) on cardiac function in PH.

Methods

In a four year single-centre retrospective analysis 225 patients with confirmed PH of various origins were enrolled to investigate the prevalence of AF, and to assess the clinical manifestation, 6-minute walk distance, NT-proBNP levels, echocardiographic parameters and hemodynamics obtained by right heart catheterization in PH with AF.

Results

AF was prevalent in 31.1%. In patients with PH and AF, parameters of clinical deterioration (NYHA/WHO functional class, 6-minute walk distance, NT-proBNP levels) and renal function were significantly compromised compared to patients with PH and sinus rhythm (SR). In the total PH cohort and in PH not related to left heart disease occurrence of AF was associated with an increase of right atrial pressure (RAP) and right atrial dilatation. While no direct association was found between pulmonary artery pressure (PAP) and AF in these patients, right ventricular function was reduced in AF, indicating more advanced disease. In PH due to left heart failure the prevalence of AF was particularly high (57.7% vs. 23.1% in other forms of PH). In this subgroup, left atrial dilatation, increase of pulmonary capillary wedge pressure, PAP and RAP were more pronounced in AF than in SR, suggesting that more marked backward failure led to AF in this setting.

Conclusion

PH is associated with increased prevalence of AF. Occurrence of AF in PH indicates clinical deterioration and more advanced disease.  相似文献   

18.
Atrial fibrillation (AF) is the most frequent clinical arrhythmia. Atrial fibrosis is an important factor in initiating and maintaining AF. However, the collagen turnover and its regulation in AF has not been completely elucidated. We tested the hypothesis that the extracellular matrix changes are more severe in patients with permanent AF in comparison with those in patients in sinus rhythm (SR). Intraoperative biopsies from the right atrial appendages (RAA) and free walls (RFW) from 24 patients with AF undergoing a mini-Maze procedure and 24 patients in SR were investigated with qualitative and quantitative immunofluorescent and Western blot analyses. As compared with SR, all patients with AF exhibited dysregulations in collagen type I and type III synthesis/degradation. Tissue inhibitors of metalloproteinases (TIMP2) was significantly enhanced only in RAA-AF. As compared with SR, collagen VI, matrix metalloproteinases MMP2, MMP9 and TIMP1 were significantly increased while TIMP3 and TIMP4 remained unchanged in all AF groups. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a newly discovered MMPs inhibitor, was elevated in RFW as compared to RAA-AF (P<0.05) and RFW-SR (P<0.05). The level of transforming growth factor (TGF)-beta1 was higher in AF than SR. Smad2 and phosphorylated Smad2 showed an elevation in RFW-AF as compared to RFW-SR, RAA-AF, and RAA-SR groups (P<0.05). CONCLUSIONS: Atrial fibrosis in AF is characterized by severe alterations in collagen I and III synthesis/degradation associated with disturbed MMP/TIMP systems and increased levels of RECK. TGF-beta1 contributes to atrial fibrosis via TGF-beta1-Smad pathway by phosphorylating Smad2. These processes culminate in accumulations of fibrillar and non-fibrillar collagens leading to excessive atrial fibrosis and maintainance of AF.  相似文献   

19.
Atrial fibrillation (AF) is the most common form of arrhythmia encountered in clinical practice. Its presence causes a rapid and irregular ventricular response, being the topic of intensive research in rate control therapies of AF. To this respect, recent studies suggest that ventricular response is notably influenced by atrial activity (AA) temporal organization. However, the interdependency between atrial and ventricular activations has not been adequately explored to date in real-life AF patients. The present work introduces a novel methodology to quantitatively assess synchronization and coupling between real atrial and ventricular activation series. Furthermore, the method operates on surface ECG recordings, thus providing an easy and cost-effective way to be applied. The method is based on a nonlinear index, such as cross-sample entropy (CSE), which estimates the conditional probability to find similar patterns within both activation series. The study has been carried out on patients with paroxysmal and persistent AF in order to be applied over atrial activation series with different properties in their organization. Results showed a statistically significant positive correlation between AA organization and the synchronization between atrial and ventricular activations (R = 0.53, p < 0.01). Furthermore, higher CSE values were observed for persistent (0.759 ± 0.053) than for paroxysmal AF episodes (0.662 ± 0.091), thus suggesting more synchronization between atrial and ventricular activations in paroxysmal AF. As a consequence, CSE provided findings consistent with previous works and could be used to reveal clinically useful information in the improvement of current rate control therapies, which are mainly focused on controlling ventricular rate without paying much attention to the atrial fibrillatory process.  相似文献   

20.
The influence of nicotine in modulating vulnerability to atrial tachycardia and fibrillation (AT/AF) remains ill defined. The isolated hearts of six young (2-3 mo) and six old (22-24 mo) male Fischer 344 rats were Langendorff perfused at 5 ml/min with oxygenated Tyrode solution at 37 degrees C, and the whole heart was also super-fused with warmed oxygenated Tyrode solution at 15 ml/min. Nicotine prolonged the interatrial conduction time and effective refractory period that were significantly (P < 0.05) higher in the old than in the young rats in a concentration-dependent manner. Nicotine had a biphasic effect on burst atrial pacing-induced AT in both groups, increasing it at 10-30 ng/ml while decreasing it at 50-100 ng/ml (P < 0.01). Nicotine at 10-100 ng/ml increased burst atrial pacing-induced AF in the young rats but suppressed it in the old rats (P < 0.01). Optical mapping showed the presence of multiple independent wavefronts during AF and a single periodic large wavefront during AT in both groups. Nicotine, at concentrations found in the blood of smokers (30-85 ng/ml), exerts biphasic effects on inducible AT/AF in young rats and suppresses it in the old rats by causing high degrees of interatrial conduction block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号