首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

There is an increasing interest to better understand endosymbiont capabilities in insects both from an ecological point of view and for pest control. Blochmannia floridanus provides important nutrients for its host, the ant Camponotus, while the bacterium in return is provided with a niche to proliferate. Blochmannia floridanus proteins and metabolites are difficult to study due to its endosymbiontic life style; however, its complete genome sequence became recently available.  相似文献   

2.

Background  

Bacterial symbioses are widespread among insects. The early establishment of such symbiotic associations has probably been one of the key factors for the evolutionary success of insects, since it may have allowed access to novel ecological niches and to new imbalanced food resources, such as plant sap or blood. Several genomes of bacterial endosymbionts of different insect species have been recently sequenced, and their biology has been extensively studied. Recently, the complete genome sequence of Candidatus Carsonella ruddii, considered the primary endosymbiont of the psyllid Pachpsylla venusta, has been published. This genome consists of a circular chromosome of 159,662 bp and has been proposed as the smallest bacterial endosymbiont genome known to date.  相似文献   

3.

Background  

Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.  相似文献   

4.

Background  

The genome of Protochlamydia amoebophila UWE25, a Parachlamydia-related endosymbiont of free-living amoebae, was recently published, providing the opportunity to search for genomic islands (GIs).  相似文献   

5.
Genome reduction is a general process that has been studied in numerous symbiotic bacteria associated with insects. We investigated the last stages of genome degradation in Blochmannia floridanus, a mutualistic bacterial endosymbiont of the ant Camponotus floridanus. We determined the tempo (rates of insertion and deletion) and mode (size and number of insertion–deletion events) of the process in the last 200 000 years by analysing a total of 16 intergenic regions in several strains of this endosymbiont from different ant populations. We provide the first calculation of the reduction rate for noncoding DNA in this endosymbiont (2.2 × 10?8 lost nucleotides/site/year) and compare it with the rate of loss in other species. Our results confirm, as it has been observed in other organisms like Buchnera aphidicola or Rickettsia spp., that deletions larger than one nucleotide can still appear in advanced stages of genome reduction and that a substitutional deletion bias exists. However, this bias is not due to a higher proportion of deletion over insertion events but to a few deletion events being larger than the rest. Moreover, we detected a substitutional AT bias that is probably responsible for the increase in the number of the small and moderate indel events in the last stages of genome reduction. Accordingly, we found intrapopulational polymorphisms for the detected microsatellites in contrast to the stability associated with these in free‐living bacteria such as Escherichia coli.  相似文献   

6.
7.

Background  

Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts.  相似文献   

8.
9.

Background  

The carpenter ant Camponotus floridanus harbors obligate intracellular mutualistic bacteria (Blochmannia floridanus) in specialized cells, the bacteriocytes, intercalated in their midgut tissue. The diffuse distribution of bacteriocytes over the midgut tissue is in contrast to many other insects carrying endosymbionts in specialized tissues which are often connected to the midgut but form a distinct organ, the bacteriome. C. floridanus is a holometabolous insect which undergoes a complete metamorphosis. During pupal stages a complete restructuring of the inner organs including the digestive tract takes place. So far, nothing was known about maintenance of endosymbionts during this life stage of a holometabolous insect. It was shown previously that the number of Blochmannia increases strongly during metamorphosis. This implicates an important function of Blochmannia in this developmental phase during which the animals are metabolically very active but do not have access to external food resources. Previous experiments have shown a nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling. In adult hosts the symbiosis appears to degenerate with increasing age of the animals.  相似文献   

10.
11.

Background  

The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them.  相似文献   

12.

Background  

Plastid replacements through secondary endosymbioses include massive transfer of genes from the endosymbiont to the host nucleus and require a new targeting system to enable transport of the plastid-targeted proteins across 3-4 plastid membranes. The dinoflagellates are the only eukaryotic lineage that has been shown to have undergone several plastid replacement events, and this group is thus highly relevant for studying the processes involved in plastid evolution. In this study, we analyzed the phylogenetic origin and N-terminal extensions of plastid-targeted proteins from Lepidodinium chlorophorum, a member of the only dinoflagellate genus that harbors a green secondary plastid rather than the red algal-derived, peridinin-containing plastid usually found in photosynthetic dinoflagellates.  相似文献   

13.

Background  

Wolbachia is an extremely widespread bacterial endosymbiont of arthropods and nematodes that causes a variety of reproductive peculiarities. Parthenogenesis is one such peculiarity but it has been hypothesised that this phenomenon may be functionally restricted to organisms that employ haplodiploid sex determination. Using two antibiotics, tetracycline and rifampicin, we attempted to eliminate Wolbachia from the diplodiploid host Folsomia candida, a species of springtail which is a widely used study organism.  相似文献   

14.
The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome—one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte‐derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid‐type glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte‐derived tertiary plastids: “gapC1h” acquired from the haptophyte endosymbiont and “gapC1p” inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid‐type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT‐derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.  相似文献   

15.

Aims

This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle.

Methods and Results

Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae‐ or Siphoviridae‐like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (< 0·000 1). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70–79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2‐like phage φMhaA1‐PHL101.

Conclusions

Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen.

Significance and Impact of the Study

This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.  相似文献   

16.

Background  

Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence.  相似文献   

17.

Background  

The bacterium Salmonella enterica includes a diversity of serotypes that cause disease in humans and different animal species. Some Salmonella serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five Salmonella genome sequences, representing a broad host range serotype (Typhimurium), two host restricted serotypes (Typhi [two genomes] and Paratyphi) and one host adapted serotype (Choleraesuis) were used to identify core genome genes that show evidence for recombination and positive selection.  相似文献   

18.

Background  

It is generally accepted that a single primary endosymbiosis in the Plantae (red, green (including land plants), and glaucophyte algae) common ancestor gave rise to the ancestral photosynthetic organelle (plastid). Plastid establishment necessitated many steps, including the transfer and activation of endosymbiont genes that were relocated to the nuclear genome of the 'host' followed by import of the encoded proteins into the organelle. These innovations are, however, highly complex and could not have driven the initial formation of the endosymbiosis. We postulate that the re-targeting of existing host solute transporters to the plastid fore-runner was critical for the early success of the primary endosymbiosis, allowing the host to harvest endosymbiont primary production.  相似文献   

19.
The methanogenic endosymbionts of anaerobic protists represent the only known intracellular archaea, yet, almost nothing is known about genome structure and content in these lineages. Here, an almost complete genome of an intracellular Methanobacterium species was assembled from a metagenome derived from its host ciliate, a Heterometopus species. Phylogenomic analysis showed that the endosymbiont was closely related to free‐living Methanobacterium isolates, and when compared with the genomes of free‐living Methanobacterium, the endosymbiont did not show significant reduction in genome size or GC content. Additionally, the Methanobacterium endosymbiont genome shared the majority of its genes with its closest relative, though it did also contain unique genes possibly involved in interactions with the host via membrane‐associated proteins, the removal of toxic by‐products from host metabolism and the production of small signalling molecules. Though anaerobic ciliates have been shown to transmit their endosymbionts to daughter cells during division, the results presented here could suggest that the endosymbiotic Methanobacterium did not experience significant genetic isolation or drift and/or that this lineage was only recently acquired. Altogether, comparative genomic analysis identified genes potentially involved in the establishment and maintenance of the symbiosis, as well provided insight into the genomic consequences for an intracellular archaeum.  相似文献   

20.

Background  

The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia 's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, w Mel and the nematode Brugia malayi, w Bm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号