首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diethyl maleate (DEM) (5 mM) and ethyl methanesulfonate (EMS) (35 mM) treatments rapidly depleted cellular reduced glutathione (GSH) below detectable levels (1 nmol/10(6) cells), and induced lipid peroxidation and necrotic cell death in freshly isolated rat hepatocytes. In hepatocytes incubated with 2.5 mM DEM and 10 mM EMS, however, the complete depletion of cellular GSH observed was not sufficient to induce lipid peroxidation or cell death. Instead, DEM- and EMS-induced lipid peroxidation and cell death were dependent on increased reactive oxygen species (ROS) production as measured by increases in dichlorofluorescein fluorescence. The addition of antioxidants (vitamin E succinate and deferoxamine) prevented lipid peroxidation and cell death, suggesting that lipid peroxidation is involved in the sequence of events leading to necrotic cell death induced by DEM and EMS. To investigate the subcellular site of ROS generation, the cytochrome P450 inhibitor, SKF525A, was found to reduce EMS-induced lipid peroxidation but did not protect against the loss of cell viability, suggesting a mitochondrial origin for the toxic lipid peroxidation event. In agreement with this conclusion, mitochondrial electron transport inhibitors (rotenone, thenoyltrifluoroacetone and antimycin A) increased EMS-induced lipid peroxidation and cell death, while the mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, blocked EMS- and DEM-mediated ROS production and lipid peroxidation. Furthermore, EMS treatment resulted in the significant loss of mitochondrial alpha-tocopherol shortly after its addition, and this loss preceded losses in cellular alpha-tocopherol levels. Treatment of hepatocytes with cyclosporin A, a mitochondrial permeability transition inhibitor, oxypurinol, a xanthine oxidase inhibitor, or BAPTA-AM, a calcium chelator, provided no protection against EMS-induced cell death or lipid peroxidation. Our results indicate that DEM and EMS induce cell death by a similar mechanism, which is dependent on the induction of ROS production and lipid peroxidation, and mitochondria are the major source for this toxic ROS generation. Cellular GSH depletion in itself does not appear to be responsible for the large increases in ROS production and lipid peroxidation observed.  相似文献   

2.
Many individuals with cardiovascular diseases undergo periodic exercise conditioning with or with out medication. Therefore, this study investigated the interaction of exercise training and chronic nitric oxide synthase (NOS) inhibitor (Nitro-L-Arginine Methyl Ester, L-NAME) treatment on blood pressure and its correlation with aortic nitric oxide (NO), antioxidant defense system and oxidative stress parameters in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, subcutaneous for 8 weeks) and (4) ET + L-NAME. Blood pressure (BP) was monitored weekly for 8 weeks with tail-cuff method. The animals were sacrificed 24 h after last treatments and thoracic aortic rings were isolated and analyzed. Exercise conditioning resulted in a significant increase in respiratory exchange ratio (RER), aortic NO production, NO synthase activity and inducible iNOS protein expression. Training significantly enhanced aortic GSH levels, GSH/GSSG ratio and up-regulation of aortic CuZn-SOD, Mn-SOD, catalase (CAT) glutathione peroxidase (GSH-Px) activity and protein expression and significantly decreased aortic lipid peroxidation. Chronic L-NAME administration resulted in a significant depletion of aortic NO, NOS activity, endothelial (eNOS) and iNOS protein expression, GSH level, GSH/GSSG ratio, down-regulation of aortic antioxidant enzyme activities and protein expressions. Aortic xanthine oxidase (XO) activity significantly increased with increased lipid peroxidation and protein oxidation after L-NAME administration. The biochemical changes were accompanied by increased in BP. Interaction of training and chronic NOS inhibitor treatment resulted in normalization of BP and aortic antioxidant enzyme activity and protein expression, up-regulation of aortic GSH/GSSG ratio, NO levels, Mn-SOD protein expression, depletion of GSSG, protein oxidation and lipid peroxidation. The data suggest that training attenuated the oxidative injury caused by chronic NOS inhibitor treatment by up-regulating the NO and antioxidant systems and lowering the BP in rats.  相似文献   

3.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

4.
Oxidative stress caused by excessive reactive species (RS) and lipid peroxidation is known to be casually linked to age-related inflammation. To test the hypothesis that fish oil (FO) intake has a beneficial effect on nephritis due to its suppressive action of oxidative stress and the enhancement of antioxidant defenses, we examined the effect of dietary FO on various oxidative stress-related parameters and guanidino compound (GC) levels using (NZB × NZW) F1 (B/W) mice. These mice were fed diets supplemented with either 5% corn oil (control) or 5% FO. At 4 and 9 months of age, the hepatic oxidative status was estimated by assessing RS generation produced from xanthine oxidase, the prostaglandin pathway and lipid peroxidation. To evaluate the effect of FO on redox status, including antioxidant defenses, GSH and GSSG levels and antioxidant enzyme activities were measured. To correlate the extent of oxidative status with the nephritic condition, creatinine, guanidino acetic acid and arginine levels were measured. Results indicated that increased levels of lipid peroxidation, RS generation and xanthine oxidase activity with age were all significantly suppressed by FO feeding. Furthermore, reduced GSH levels, GSH/GSSG ratio and antioxidant enzyme activities in the FO-fed mice were effectively enhanced compared to the corn oil-fed mice. Among several GCs, the age-related increase of creatinine level was blunted by FO. Based on these results, we propose that dietary FO exerts beneficial effects in aged, nephritic mice by suppressing RS, superoxide and lipid peroxidation, and by maintaining a higher GSH/GSSG ratio and antioxidant enzyme activities.  相似文献   

5.
Hepatic steatosis and the accompanying oxidative stress have been associated with a variety of liver diseases. It is not known if fat accumulation per se plays a direct role in the oxidative stress of the organ. This study tested if steatosis induced by a short-term carbohydrate-rich diet results in an increased hepatic sensitivity to oxidative stress. Antioxidant status was determined in a liver perfusion system and in isolated parenchymal, endothelial and Kupffer cells from rats kept on sucrose-rich diet or on regular diet for 48 h. t-Butyl hydroperoxide addition (2 mM) to the perfusion fluid resulted in a release of alanine aminotransferase (ALT) in livers from controls, whereas no ALT release was observed in fatty livers. After t-butyl hydroperoxide addition, oxidized glutathione release was 40% less in fatty than in control livers, whereas reduced glutathione (GSH) release was not different. Sinusoidal oxidant stress was mimicked by the addition of lipopolysaccharide (LPS) from Escherichia coli (10 microg/ml) followed by the addition of opsonized zymosan (8 mg/ml) to the perfusion medium. LPS plus zymosan treatments resulted in the release of ALT in control but not in fatty livers. At the end of perfusion, liver glutathione content was 3-fold elevated, and the tissue content of lipid peroxidation products was approx. 40% less in fatty livers compared to controls. GSH content was doubled and glucose-6-phosphate dehydrogenase (G6PD) expression was elevated by 3- and 10-fold in sinusoidal endothelial and parenchymal cells form fatty livers compared to cells from control animals. Following H(2)O(2) administration in vitro (0.2-1 mM), GSH remained elevated in endothelial and parenchymal cells from fatty livers compared to cells from controls. In contrast, G6PD activity and GSH content were similar in Kupffer cells isolated from fatty or control livers. The study shows that hepatic fat accumulation caused by a short-term sucrose diet is not accompanied by elevated hepatic lipid peroxidation, and an elevated hepatic antioxidant activity can be manifested in the presence of prominent steatosis. The diet-induced increase in G6PD expression and, thus, the efficient maintenance of reduced glutathione in endothelial and parenchymal cells are a supportive mechanism in the observed hepatic resistance against intracellular or sinusoidal oxidative stress.  相似文献   

6.
The metabolism and toxicity of formaldehyde (CH2O) in isolated rat hepatocytes was found to be dependent upon the intracellular concentration of glutathione (GSH). Using hepatocytes depleted of GSH by treatment with diethyl maleate (DEM), the rate of CH2O (5.0 mM) disappearance was significantly decreased. Formaldehyde decreased the concentration of GSH in hepatocytes, probably by the extrusion of the CH2O-GSH adduct, S-hydroxymethylglutathione. Formaldehyde toxicity was potentiated in cells pretreated with 1.0 mM DEM as measured by the loss of membrane integrity (NADH stimulation of lactate dehydrogenase (LDH) activity) and an increase in lipid peroxidation (formation of thiobarbituric acid-reactive compounds). This potentiation of toxicity was both CH2O concentration-dependent and time-dependent. There was an excellent correlation between the increase in lipid peroxidation and the decrease in cell viability. L-Methionine (1.0 mM) both protected the cells from toxicity caused by the combination of 8.0 mM CH2O and 1.0 mM DEM and increased the cellular GSH concentration. The antioxidants, ascorbate, butylated hydroxytoluene (BHT) and alpha-tocopherol (10, 25 and 125 microM), all exhibited dose-dependent protection against toxicity produced by 8.0 mM CH2O and 1.0 mM DEM. At toxic concentrations of CH2O (10.0-13.0 mM), administered by itself, lipid peroxidation did not increase concomitantly with the decrease in cell viability and the addition of antioxidants (125 microM) did not influence CH2O toxicity. These results suggest that CH2O toxicity in GSH-depleted hepatocytes may be mediated by free radicals as a result of the effect of CH2O on a critical cellular pool of GSH. However, cells with normal concentrations of GSH are damaged by CH2O by a different mechanism.  相似文献   

7.
Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects were unaffected by BSO pre-treatment. qRT-PCR showed increased VCAM1 expression, but no change in GCLM and HMOX1 expression in CB-exposed HUVECs. Pre-exposure to CB induced lipid accumulation in THP-1a cells, which was not affected by the presence of the antioxidant N-acetylcysteine. In addition, the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production.  相似文献   

8.
It has been suggested that the alpha-class glutathione S-transferases (GSTs) protect various cell types from oxidative stress and lipid peroxidation (LPO). In order to examine the protective role of alpha-class GST isozyme hGSTA1-1 against doxorubicin (DOX)-induced lipid peroxidation, cytotoxicity, and apoptosis, human small cell lung cancer (SCLC) H69 cells were stably transfected with hGSTA1. Immunological and biochemical characterization of hGSTA1-transfected cells revealed the expression of functionally active hGSTA1-1 localized near the cellular plasma membranes. hGSTA1-transfected cells acquired significantly increased resistance to the DOX-induced cytotoxicity by suppressing lipid peroxidation levels in these cells. Overexpression of hGSTA1-1 in cells inhibited DOX-mediated depletion of GSH and higher GSH levels were found in DOX-treated hGSTA1-transfected cells as compared with empty vector-transfected controls. hGSTA1-1 overexpression also provided protection to cells from DOX-induced apoptosis by inhibiting phosphorylation of c-Jun-N-terminal kinases (JNK), caspase-3 activation, and by preserving the levels of anti-apoptotic protein Bcl-2. These results are consistent with the idea that the alpha-class GSTs provide protection against oxidative stress by attenuating lipid peroxidation and these enzymes can modulate signaling for apoptosis.  相似文献   

9.
BACKGROUND: The oxidative status of cells has been shown to modulate various cell functions and be involved in physiological and pathological conditions, including hereditary chronic anemias, such as thalassemia. It is maintained by the balance between oxidants, such as reactive oxygen species (ROS), and antioxidants, such as reduced glutathione (GSH). METHODS: We studied peripheral RBC derived from normal and thalassemic donors. Flow cytometric methods were used to measure (1) generation of ROS; (2) the content of reduced GSH; and (3) peroxidation of membrane lipids as an indication of membrane damage. RESULTS: ROS and lipid peroxidation were found to be higher, and GSH lower, in thalassemic RBC compared with normal RBC, both at baseline as well as following oxidative stress, such as exposure to hydrogen peroxide. To simulate a state of iron overload, normal RBC were exposed to extracellular ferric ammonium citrate or hemin, or their Hb was denatured by phenylhydrazine. All these treatments increased ROS and lipid peroxidation and decreased GSH. These effects were reversed by N-acetyl cysteine, a known ROS scavenger. CONCLUSIONS: Flow cytometry can be useful for measuring oxidative stress and its effects on RBC in various diseases and for studying various chemical agents as antioxidants.  相似文献   

10.
Most animals synthesize ascorbate. It is an essential enzymatic cofactor for the synthesis of a variety of biological molecules and also a powerful antioxidant. There is, however, little direct evidence supporting an antioxidant role for endogenously produced ascorbate. Recently, we demonstrated that incubation of rat hepatocytes with 1-bromoheptane or phorone simultaneously depleted glutathione (GSH) and triggered rapid ascorbate synthesis. The present study investigates the hypothesis that endogenous ascorbate synthesis can confer protection against oxidative stress. Rat and guinea pig hepatocytes were depleted of GSH with 1-bromoheptane and subsequently treated with the oxidative stressor cumene hydroperoxide (CHP) in the presence or absence of the ascorbate synthesis inhibitor sorbinil. In rat hepatocytes, ascorbate content increased linearly (from 15.1 to 35.8 nmol/10(6) cells) over a 105-min incubation. Prior depletion of GSH increased CHP-induced cellular reactive oxygen species (ROS) production, lipid peroxidation, and cell death in rat and guinea pig hepatocytes. Inhibiting ascorbate synthesis, however, further elevated ROS production (2-fold), lipid peroxidation (1.5-fold), and cell death (2-fold) in rat hepatocytes only. This is the first time that endogenous ascorbate synthesis has been shown to decrease cellular susceptibility to oxidative stress. Protection by endogenously produced ascorbate may therefore need to be addressed when extrapolating data to humans from experiments using rodents capable of synthesizing ascorbate.  相似文献   

11.
The novel antioxidant 3-O-caffeoyl-one-methylquinic acid (MCGA3) is a methyl chlorogenic acid derivative isolated from bamboo leaves. MCGA3 scavenges reactive oxygen species (ROS) and inhibits lipid peroxidation and xanthine oxidase in vitro. In this study, we evaluated the cytoprotective effect of MCGA3, which occurs via heme oxygenase-1 (HO-1) induction in bovine vascular endothelial cells exposed to tert-butylhydroperoxide (tBHP). Cells treated with 1 mM tBHP (6-18 h) generated substantial ROS and concomitantly lost most intracellular lactate dehydrogenase (LDH), which then caused necrotic cell death. Of the several MCGA antioxidants and structurally related phenolic acids examined in this study, MCGA3 (0.01-0.15 mM) was found to completely block this necrosis and generation of ROS by tBHP. Surprisingly, MCGA3 by itself was found to be a potent inducer of HO-1. We observed the time- and dose-dependent induction of HO-1 mRNA and protein, which was closely associated with decreased intracellular ROS and necrosis against tBHP. Deesterified or Al-chelated MCGA3 or co-treatment with MCGA3 and actinomycin D abolished HO-1 induction and the antinecrotic effect of MCGA3. Zinc protoporphyrin IX and cycloheximide attenuated the cytoprotection afforded by MCGA3, but did not reduce HO-1 mRNA. Interestingly, N-acetylcysteine (1 mM) enhanced the HO-1 induction of MCGA3, but N-acetylcysteine itself did not induce HO-1. These results suggested that not only ortho-dihydroxyl groups but also aromatic ester and methoxyl ester moieties are necessary for full HO-1 induction and cytoprotection against toxic tBHP-derived ROS. Ferritin mRNA was also upregulated during all HO-1 induction by MCGA3, which might decrease iron and lower ROS levels. Consequently, the combined action of HO-1 and ferritin may protect cells from toxic tBHP-mediated necrosis.  相似文献   

12.
Liver conservation for transplantation is usually made at 2-4 degrees C. We studied the effect of rewarming to 37 degrees C for up to 3 h of rat hepatocytes kept at 4 degrees C for 20 h, modulating intracellular glutathione (GSH) concentration either with a GSH precursor (N-acetyl-L-cysteine, NAC), or with GSH depleting agents (diethylmaleate and buthionine sulfoximine, DEM/BSO). Untreated hepatocytes showed time-dependent production of reactive oxygen species (ROS), lipid peroxidation, chromatin condensation and membrane blebbing, decrease in GSH concentration, and protein sulfhydryl groups. Fluorochromatization with Propidium Iodide (PI) and Annexin V (AnxV) of cells rewarmed for 1 h caused an increase of AnxV-positive cells without PI staining and any observed lactate dehydrogenase leakage. TUNEL and DNA-laddering tests were negative for all times and treatments, indicating that apoptosis may occur without DNA fragmentation. Cold preservation and rewarming in the presence of NAC induced a significant improvement in the morphology, less oxidative stress and apoptosis. Conversely, DEM/BSO caused a marked deterioration of morphology, increase of oxidative stress and apoptosis. These results suggested that marked changes in GSH status might play a critical role in triggering apoptosis during cold preservation of isolated rat hepatocytes. NAC, added before rewarming, might represent a therapeutic approach for preventing the early events of apoptosis during cold storage.  相似文献   

13.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

14.
Choi IY  Park JW 《Free radical research》2003,37(10):1099-1105
Heat shock may increase oxidative stress due to increased production of reactive oxygen species (ROS) and/or the promotion of cellular oxidation events. Cytosolic NADP
+
-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against heat shock in U937 cells was investigated in control and cells treated with oxlalomalate, a competitive inhibitor of ICDH. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of ROS, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin in U937 cells treated with oxalomalate. These results suggest that ICDH plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of ROS.  相似文献   

15.
Riboflavin, which causes plants to produce reactive oxygen species (ROS) when exposed to light, is an excellent photosensitizer for biocidal reactions. This study explores the possible protective role of riboflavin against waterlogging stress in tobacco plants. Tobacco seedlings (4 weeks old) were divided into four groups and pretreated with 0, 0.2, 0.5 or 1.0 mM riboflavin for 1 week, after which all groups were exposed to waterlogging stress for 7 days. We observed delayed leaf senescence and extended survival time, suggesting that riboflavin can confer increased waterlogging tolerance to plants as compared with the control (0 mM riboflavin). Enhanced stomatal closure was observed in the riboflavin-pretreated tobacco. We evaluated the levels of oxidative damage (H2O2 and lipid peroxidation), antioxidant enzyme (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) activity and antioxidant metabolites (including ascorbate and glutathione) in tobacco leaves that were pretreated with riboflavin. However, the results show that riboflavin pretreatment caused a decrease in chlorophyll content, antioxidant enzyme activity and redox values (AsA/DHA and GSH/GSSG), while causing a significant increase in lipid peroxidation, H2O2 accumulation and total ascorbate or glutathione content. In addition, the survival time and stomatal aperture of riboflavin-treated plants were significantly modified by exogenous application of GSH, well-known ROS scavenger. To explain the stomatal closure observed in tobacco plants, we propose a “damage avoidance” hypothesis based on riboflavin-mediated ROS toxicity. The protective function of the photosensitizer riboflavin may be highly significant for farming in frequently waterlogged areas.  相似文献   

16.
17.
Cultured hepatocytes were exposed to two chemicals, dinitrofluorobenzene (DNFB) and diethyl maleate (DEM), that abruptly deplete cellular stores of glutathione. Upon the loss of GSH, lipid peroxidation was evidenced by an accumulation of malondialdehyde in the cultures followed by the death of the hepatocytes. Pretreatment of the hepatocytes with a ferric iron chelator, deferoxamine, or the addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), to the culture medium prevented both the lipid peroxidation and the cell death produced by either DNFB or DEM. However, neither deferoxamine nor DPPD prevented the depletion of GSH caused by either agent. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or inhibition of catalase by aminotriazole sensitized the hepatocytes to the cytotoxicity of DNFB. In a similar manner, pretreatment with BCNU potentiated the cell killing by DEM. DPPD and deferoxamine protected hepatocytes pretreated with BCNU and then exposed to DNFB or DEM. These data indicate that an abrupt depletion of GSH leads to lipid peroxidation and cell death in cultured hepatocytes. It is proposed that GSH depletion sensitizes the hepatocyte to its constitutive flux of partially reduced oxygen species. Such an oxidative stress is normally detoxified by GSH-dependent mechanisms. However, with GSH depletion these activated oxygen species are toxic as a result of the iron-dependent formation of a potent oxidizing species.  相似文献   

18.
High levels of reactive oxygen species (ROS), which may be related to reduced semen quality, are detected during semen cryopreservation in some species. The objectives of this study were to measure the oxidative stress during ram semen cryopreservation and to evaluate the effect of adding 2 antioxidant mimics of superoxide dismutase (Tempo and Tempol) during the cooling process on sperm motility, viability, acrosomal integrity, capacitation status, ROS levels, and lipid peroxidation in frozen and/or thawed ram spermatozoa. Measuring of ROS levels during the cooling process at 35, 25, 15, and 5 °C and after freezing and/or thawing showed a directly proportional increase (P < 0.05) when temperatures were lowering. Adding antioxidants at 10 °C confered a higher motility and sperm viability after cryopreservation in comparison with adding at 35 °C or at 35 °C/5 °C. After freezing and/or thawing, sperm motility was significantly higher (P < 0.05) in Tempo and Tempol 1 mM than that in control group. Percentage of capacitated spermatozoa was lower (P < 0.05) in Tempo and Tempol 1 mM in comparison with that in control group. In addition, ROS levels and lipid peroxidation in group Tempo 1 mM were lower (P < 0.05) than those in control group. These results demonstrate that ram spermatozoa are exposed to oxidative stress during the cooling process, specifically when maintained at 5 °C and that lipid peroxidation induced by high levels of ROS decreases sperm motility and induces premature sperm capacitation. In contrast, the addition of Tempo or Tempol at 0.5 to 1 mM during the cooling process (10 °C) protects ram spermatozoa from oxidative stress.  相似文献   

19.
Flavonoids are potent scavengers of reactive oxygen species (ROS) that effectively prevent erythrocyte oxidation. Their antioxidant activities are governed by their structural characteristics and their ability to interact with and penetrate lipid bilayers. In order to gain a better understanding of the relationship between cholesterol contents and the antioxidant effectiveness of flavonoids against oxidative damage induced by ROS in cells, here we analyzed the integrity and structural stability of cholesterol-modified (enriched or depleted) and control erythrocytes exposed to tert-butyl hydroperoxide in the presence of quercetin or rutin. In control and cholesterol-enriched erythrocytes, quercetin provided greater protection against lipid peroxidation, ROS formation, and it preserved better cellular integrity than rutin. Both antioxidants suppressed the alterations in membrane fluidity and lipid losses with similar efficiency, reducing hemoglobin oxidation by 30% and GSH losses by 60% in the above-mentioned erythrocytes. Cholesterol depletion reduced the efficiency of the antioxidant power of both flavonoids against oxidative damage induced in the erythrocyte membrane, while a stronger degree of protection of GSH and hemoglobin contents was observed, mainly in the presence of rutin. These findings suggest a preferential incorporation of the antioxidants into the membranes from erythrocytes with normal and high cholesterol contents, whereas they would mainly be located in the cytoplasm of cholesterol-depleted erythrocytes.  相似文献   

20.
Oxidative stress, caused by the over production of reactive oxygen species (ROS), has been shown to contribute to cell damage associated with neurotrauma and neurodegenerative diseases. ROS mediates cell damage either through direct oxidation of lipids, proteins and DNA or by acting as signaling molecules to trigger cellular apoptotic pathways. The 78 kDa glucose-regulated protein (GRP78) is an ER chaperone that has been suggested to protect cells against ROS-induced damage. However, the protective mechanism of GRP78 remains unclear. In this study, we used C6 glioma cells transiently overexpressing GRP78 to investigate the protective effect of GRP78 against oxidative stress (hydrogen peroxide)-induced injury. Our results showed that the overexpression of GRP78 significantly protected cells from ROS-induced cell damage when compared to non-GRP78 overexpressing cells, which was most likely due to GRP78-overexpressing cells having higher levels of glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two antioxidants that protect cells against oxidative stress. Although hydrogen peroxide treatment increased lipid peroxidation in non-GRP78 overexpressing cells, this increase was significantly reduced in GRP78-overexpressing cells. Overall, these results indicate that GRP78 plays an important role in protecting glial cells against oxidative stress via regulating the expression of GSH and NQO1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号