首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Consumption of astaxanthin is increasingly associated with a range of health benefits. Attempts to engineer ketocarotenoid biosynthesis in plants have been successful although there are no reports of nutritionally significant levels of astaxanthin in plant storage organs. Thus, in this study, ketocarotenoid biosynthesis was engineered in potato tubers. Both Solanum tuberosum and Solanum phureja transgenic lines were produced that expressed an algal bkt1 gene, encoding a beta-ketolase, and accumulated ketocarotenoids. Two major ketocarotenoids were detected, ketolutein and astaxanthin. The level of unesterified astaxanthin reached ca. 14 microg g(-1) DW in some bkt1 expressing lines of S. phureja but was much lower in the S. tuberosum background. Co-transformation of S. tuberosum with crtB, encoding phytoene synthase, and the bkt1 gene was achieved in order to determine whether this would enhance the levels of S. tuberosum ketocarotenoid.  相似文献   

3.
4.
The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, beta-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two beta rings such as beta-carotene, zeaxanthin and violaxanthin, while the other introduces both beta- and epsilon-rings in lycopene to form alpha-carotene and lutein. By reducing the expression of lycopene epsilon-cyclase (epsilon-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of beta-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of epsilon-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. epsilon-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.  相似文献   

5.
6.
7.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

8.
9.
Bombyx mori is an excellent model for the study of carotenoid-binding proteins (CBP). In previous papers, we identified and molecularly characterized a CBP from the Y-gene dominant mutants. In the present study, we attempted to correlate and establish lipid metabolism and distribution in these mutants. When [3H]-triolein was fed to the mutants, typical patterns of uptake of labeled fatty acids from midgut to hemolymph and subsequent delivery to fat body and silk glands were obtained in all mutants. Further analysis of lipid and carotenoid profiles revealed that the yellow coloration in the hemolymph associated with lipophorin is not attributed to a difference in lipophorin concentrations among the mutants, nor to its lipid composition, but rather to its carotenoid content. Lipophorin of the Y+I mutant exhibited the highest concentration of total carotenoids of 55.8 microg/mg lipophorin compared to 3.1 microg/mg in the +Y+I mutant, 1.2 microg/mg in the YI mutant and 0.5 microg/mg in the +YI mutant. Characteristic retention time in HPLC of the different classes of carotenoids of lipophorin identified the presence of lutein as the major chromophore (62-77%), followed by beta-carotenes (22-38%). Although lutein and beta-carotene content of mutants' lipophorin differed significantly, the ratio of lutein to beta-carotene of 3:1 was not different among mutants. Similarly, lipid compositions of mutant silk glands were not significantly different, but carotenoid contents were. The significantly high concentration of lutein in the Y+I mutant silk gland represented more than 160-fold increase compared to +Y+I mutant (p<0.001). In this report, we conclude that lipid metabolism in the mutants is not defected and that the molecular basis for colorless hemolymph and cocoons is a defect in the cellular uptake of lutein associated with the Y-gene recessive mutants.  相似文献   

10.
Carotenoids have drawn much attention recently because of their potentially positive benefits to human health as well as their utility in both food and animal feed. Previous work in canola (Brassica napus) seed over-expressing the bacterial phytoene synthase gene (crtB) demonstrated a change in carotenoid content, such that the total levels of carotenoids, including phytoene and downstream metabolites like beta-carotene, were elevated 50-fold, with the ratio of beta- to alpha-carotene being 2:1. This result raised the possibility that the composition of metabolites in this pathway could be modified further in conjunction with the increased flux obtained with crtB. Here we report on the expression of additional bacterial genes for the enzymes geranylgeranyl diphosphate synthase (crtE), phytoene desaturase (crtI) and lycopene cyclase (crtY and the plant B. napus lycopene beta-cyclase) engineered in conjunction with phytoene synthase (crtB) in transgenic canola seed. Analysis of the carotenoid levels by HPLC revealed a 90% decrease in phytoene levels for the double construct expressing crtB in conjunction with crtI. The transgenic seed from all the double constructs, including the one expressing the bacterial crtB and the plant lycopene beta-cyclase showed an increase in the levels of total carotenoid similar to that previously observed by expressing crtB alone but minimal effects were observed with respect to the ratio of beta- to alpha-carotene compared to the original construct. However, the beta- to alpha-carotene ratio was increased from 2:1 to 3:1 when a triple construct consisting of the bacterial phytoene synthase, phytoene desaturase and lycopene cyclase genes were expressed together. This result suggests that the bacterial genes may form an aggregate complex that allows in vivo activity of all three proteins through substrate channeling. This finding should allow further manipulation of the carotenoid biosynthetic pathway for downstream products with enhanced agronomic, animal feed and human nutritional values.  相似文献   

11.
A bacterial phytoene synthase (crtB) gene was overexpressed in a seed-specific manner and the protein product targeted to the plastid in Brassica napus (canola). The resultant embryos from these transgenic plants were visibly orange and the mature seed contained up to a 50-fold increase in carotenoids. The predominant carotenoids accumulating in the seeds of the transgenic plants were alpha and beta-carotene. Other precursors such as phytoene were also detected. Lutein, the predominant carotenoid in control seeds, was not substantially increased in the transgenics. The total amount of carotenoids in these seeds is now equivalent to or greater than those seen in the mesocarp of oil palm. Other metabolites in the isoprenoid pathway were examined in these seeds. Sterol levels remained essentially the same, while tocopherol levels decreased significantly as compared to non-transgenic controls. Chlorophyll levels were also reduced in developing transgenic seed. Additionally, the fatty acyl composition was altered with the transgenic seeds having a relatively higher percentage of the 18 : 1 (oleic acid) component and a decreased percentage of the 18 : 2 (linoleic acid) and 18 : 3 (linolenic acid) components. This dramatic increase in flux through the carotenoid pathway and the other metabolic effects are discussed.  相似文献   

12.
The carotenoid content was examined in leaf and berry tissues of grapevines (cv. Cabernet Sauvignon) grown either under ambient conditions or under a polyester film to reduce UV light by 98%. Total carotenoids in leaves were less in vines grown under the UV screen. Levels of beta-carotene decreased with berry development around veraison. This effect was more pronounced in vines grown under reduced UV light. The lutein content of berries appeared to remain relatively constant with berry development, but levels were decreased under the UV screen. These observations are important for the wine industry because of the biosynthetic link between carotenoids and wine flavour and aroma compounds.  相似文献   

13.
The stability to autoxidation of the polar carotenoids, lutein and zeaxanthin, was compared to that of the less polar carotenoids, beta-carotene and lycopene at physiologically or pathophysiologically relevant concentrations of 2 and 6 microM, after exposure to heat or cigarette smoke. Three methodological approaches were used: 1) Carotenoids dissolved in solvents with different polarities were incubated at 37 and 80 degrees C for different times. 2) Human plasma samples were subjected to the same temperature conditions. 3) Methanolic carotenoid solutions and plasma were also exposed to whole tobacco smoke from 1-5 unfiltered cigarettes. The concentrations of individual carotenoids in different solvents were determined spectrophotometrically. Carotenoids from plasma were extracted and analyzed using high performance liquid chromatography. Carotenoids were generally more stable at 37 than at 80 degrees C. In methanol and dichloromethane the thermal degradation of beta-carotene and lycopene was faster than that of lutein and zeaxanthin. However, in tetrahydrofuran beta-carotene and zeaxanthin degraded faster than lycopene and lutein. Plasma carotenoid levels at 37 degrees C did not change, but decreased at 80 degrees C. The decrease of beta-carotene and lycopene levels was higher than those for lutein and zeaxanthin. Also in the tobacco smoke experiments the highest autoxidation rates were found for beta-carotene and lycopene at 2 microM, but at 6 microM lutein and zeaxanthin depleted to the same extent as beta-carotene. These data support our previous studies suggesting that oxidative stress degrade beta-carotene and lycopene faster than lutein and zeaxanthin. The only exception was the thermal degradation of carotenoids solubilized in tetrahydrofuran, which favors faster breakdown of beta-carotene and zeaxanthin.  相似文献   

14.
Generation of transgenic maize with enhanced provitamin A content   总被引:3,自引:0,他引:3  
Vitamin A deficiency (VAD) affects over 250 million people worldwide and is one of the most prevalent nutritional deficiencies in developing countries, resulting in significant socio-economic losses. Provitamin A carotenoids such as beta-carotene, are derived from plant foods and are a major source of vitamin A for the majority of the world's population. Several years of intense research has resulted in the production of 'Golden Rice 2' which contains sufficiently high levels of provitamin A carotenoids to combat VAD. In this report, the focus is on the generation of transgenic maize with enhanced provitamin A content in their kernels. Overexpression of the bacterial genes crtB (for phytoene synthase) and crtI (for the four desaturation steps of the carotenoid pathway catalysed by phytoene desaturase and zeta-carotene desaturase in plants), under the control of a 'super gamma-zein promoter' for endosperm-specific expression, resulted in an increase of total carotenoids of up to 34-fold with a preferential accumulation of beta-carotene in the maize endosperm. The levels attained approach those estimated to have a significant impact on the nutritional status of target populations in developing countries. The high beta-carotene trait was found to be reproducible over at least four generations. Gene expression analyses suggest that increased accumulation of beta-carotene is due to an up-regulation of the endogenous lycopene beta-cylase. These experiments set the stage for the design of transgenic approaches to generate provitamin A-rich maize that will help alleviate VAD.  相似文献   

15.
Carotenoids are thought to diminish the incidence of certain degenerative diseases, but the mechanisms involved in their intestinal absorption are poorly understood. Our aim was to obtain basic data on the fate of carotenoids in the human stomach and duodenum. Ten healthy men were intragastrically fed three liquid test meals differing only in the vegetable added 3 wk apart and in a random order. They contained 40 g sunflower oil and mashed vegetables as the sole source of carotenoids. Tomato purée provided 10 mg lycopene as the main carotenoid, chopped spinach (10 mg lutein), and carrot purée (10 mg beta-carotene). Samples of stomach and duodenal contents and blood samples were collected at regular time intervals after meal intake. all-trans and cis carotenoids were assayed in stomach and duodenal contents, in the fat and aqueous phases of those contents, and in chylomicrons. The cis-trans beta-carotene and lycopene ratios did not significantly vary in the stomach during digestion. Carotenoids were recovered in the fat phase present in the stomach during digestion. The proportion of all-trans carotenoids found in the micellar phase of the duodenum was as follows (means +/- SE): lutein (5.6 +/- 0.4%), beta-carotene (4.7 +/- 0.3%), lycopene (2.0 +/- 0.2%). The proportion of 13-cis beta-carotene in the micellar phase was significantly higher (14.8 +/- 1.6%) than that of the all-trans isomer (4.7 +/- 0.3%). There was no significant variation in chylomicron lycopene after the tomato meal, whereas there was significant increase in chylomicron beta-carotene and lutein after the carrot and the spinach meals, respectively. There is no significant cis-trans isomerization of beta-carotene and lycopene in the human stomach. The stomach initiates the transfer of carotenoids from the vegetable matrix to the fat phase of the meal. Lycopene is less efficiently transferred to micelles than beta-carotene and lutein. The very small transfer of carotenoids from their vegetable matrices to micelles explains the poor bioavailability of these phytomicroconstituents.  相似文献   

16.
Major carotenoids of human plasma and tissues were exposed to radical-initiated autoxidation conditions. The consumption of lutein and zeaxanthin, the only carotenoids in the retina, and lycopene and beta-carotene, the most effective quenchers of singlet oxygen in plasma, were compared. Under all conditions of free radical-initiated autoxidation of carotenoids which were investigated, the breakdown of lycopene and beta-carotene was much faster than that of lutein and zeaxanthin. Under the influence of UV light in presence of Rose Bengal, by far the highest breakdown rate was found for beta-carotene, followed by lycopene. Bleaching of carotenoid mixtures mediated by NaOCl, addition of azo-bis-isobutyronitril (AIBN), and the photoirradiation of carotenoid mixtures by natural sunlight lead to the following sequence of breakdown rates: lycopene > beta-carotene > zeaxanthin > lutein. The slow degradation of the xanthophylls zeaxanthin and lutein may be suggested to explain the majority of zeaxanthin and lutein in the retina of man and other species. In correspondence to that, the rapid degradation of beta-carotene and lycopene under the influence of natural sunlight and UV light is postulated to be the reason for the almost lack of those two carotenoids in the human retina. Nevertheless, a final proof of that theory is lacking.  相似文献   

17.
The authors investigated the carotenoid content in different parts of Anguilla anguilla (L.) undertaking spawning migration, in spring, summer and autumn. By means of column and thin-layer chromatography, the following carotenoids were found to be present: beta-carotene, epsilon-carotene, beta-cryptoxanthin, neothxanthin, lutein, tunaxanthin, zeaxanthin, lutein epoxide, 3'-hydroxyechincnone, canthaxanthin, idoxanthin, phoenicoxanthin, alpha-doradexanthin, beta-doradexanthin and astaxanthin. In the eel examined individuals a different carotenoid content was found in October. In winter when eels do not feed and therefore do not absorb carotenoids, carotenoid content decreases in the liver, the intestines, and particularly in the muscles. In spring when eels undertake active life carotenoid concentration increases rapidly in these organs within a month. In summer during intensive predation, carotenoid concentration in the muscles reaches a maximum.  相似文献   

18.
Rhodotorula glutinis and Sporobolomyces roseus, grown under different aeration regimes, showed differential responses in their carotenoid content. At higher aeration, the concentration of total carotenoids increased relative to biomass and total fatty acids in R. glutinis, but the composition of carotenoids (torulene > beta-carotene > gamma-carotene > torularhodin) remained unaltered. In contrast, S. roseus responded to enhanced aeration by a shift from the predominant beta-carotene to torulene and torularhodin, indicating a biosynthetic switch at the gamma-carotene branch point of carotenoid biosynthesis. The overall levels of total carotenoids in highly aerated flasks were 0.55 mol-percent and 0.50 mol-percent relative to total fatty acids in R. glutinis and S. roseus (respectively), and 206 and 412 microg g(-1) dry weight (respectively).  相似文献   

19.
The effect of light exposure on the steroidal glycoalkaloid content of Solanum phureja tubers has been investigated and compared with that in domesticated potato (Solanum tuberosum) tubers. The results indicated that the increase in the concentration of solanidine-based glycoalkaloids, alpha-solanine and alpha-chaconine was broadly similar in both species. However, in the S. phureja tubers, light exposure also induced the synthesis of tomatidenol-based glycoalkaloids. These have been identified as alpha- and beta-solamarine. These glycoalkaloids were not detected in tubers continually stored in darkness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号