首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
CYP1A2, a principal catalyst for metabolism of various therapeutic drugs and carcinogens, among others, is in part regulated by the stress response. This study was designed to assess whether catecholamines and in particular adrenergic receptor-dependent pathways, modulate benzo(alpha)pyrene (B(alpha)P)-induced hepatic CYP1A2. To distinguish between the role of central and peripheral catecholamines in the regulation of CYP1A2 induction, the effect of central and peripheral catecholamine depletion using reserpine was compared to that of peripheral catecholamine depletion using guanethidine. The effects of peripheral adrenaline and L-DOPA administration were also assessed. The results suggest that alterations in central catecholamines modulate 7-methoxyresorufin O-demethylase activity (MROD), CYP1A2 mRNA and protein levels in the B(alpha)P-induced state. In particular, central catecholamine depletion, dexmedetomidine-induced inhibition of noradrenaline release and blockade of alpha(1)-adrenoceptors with prazosin, up-regulated CYP1A2 expression. Phenylephrine and dexmedetomidine-induced up-regulation may be mediated, in part, via peripheral alpha(1)- and alpha(2)-adrenoceptors, respectively. On the other hand, the L-DOPA-induced increase in central dopaminergic activity was not followed by any change in the up-regulation of CYP1A2 expression by B(alpha)P. Central noradrenergic systems appeared to counteract up-regulating factors, most likely via alpha(1)- and alpha(2)-adrenoceptors. In contrast, peripheral alpha- and beta-adrenoceptor-related signaling pathways are linked to up-regulating processes. The findings suggest that drugs that bind to adrenoceptors or affect central noradrenergic neurotransmission, as well as factors that challenge the adrenoceptor-linked signaling pathways may deregulate CYP1A2 induction. This, in turn, may result in drug-therapy and drug-toxicity complications.  相似文献   

2.
The present study investigated the involvement of catecholamines in stress-mediated alterations in CYP1A1 induction by benzo(alpha)pyrene (B(alpha)P) in Wistar rats. This was achieved by measuring EROD activity and CYP1A1 mRNA levels in liver tissue from rats exposed to restraint stress and B(alpha)P coupled with pharmacological modulation of peripheral and central catecholamine levels and different adrenoceptors. In a state of reserpine-induced central and peripheral catecholamine depletion, stress strongly suppressed EROD induction. Peripheral catecholamines do not appear to play a critical role in the stress-mediated modulation of EROD inducibility by B(alpha)P. Stress did not alter EROD inducibility by B(alpha)P when peripheral catecholamines were either depleted by guanethidine or supplemented by peripheral adrenaline administration. On the other hand, central noradrenergic systems appear to have a role in the stress-mediated changes in B(alpha)P-induced EROD activity and Cyp1A1 gene expression. Stimulation or blockade of noradrenaline release with atipamezole and dexmedetomidine, respectively, significantly modified the up-regulating effect of stress. Alpha1 adrenoceptors also appear to participate in the effect of stress on EROD inducibility. Alpha1-blockade with prazosin potentiated the up-regulating effect of stress, possibly preventing the down-regulating effect of noradrenaline. Beta adrenoceptors also seem to be involved directly or indirectly in the stress-mediated modulation of Cyp1A1, as propranolol (beta-antagonist) blocked the down-regulating effect of stress on B(alpha)P-induced Cyp1A1 gene expression. Plasma corticosterone alterations after stress were not related to alterations in the B(alpha)P-induced EROD activity and Cyp1A1 gene expression. In conclusion, stress appears to interfere in the regulation of B(alpha)P-induced hepatic CYP1A1 in an unpredictable manner and via signalling pathways not always directly related to catecholamines. In particular, whenever drug treatment disrupts noradrenergic neurotransmission, other stress-stimulated factors appear to modify the induction of CYP1A1. In summary, regulation of induction of hepatic CYP1A1 during stress appears to involve various components of the stress system, including central and peripheral catecholamines, which interact in a complex manner, yet to be elucidated.  相似文献   

3.
Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of beta-adrenergic receptor (betaAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting alpha2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial alpha2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein-coupled receptor kinase 2 (GRK2). Adrenal gland-specific GRK2 inhibition reversed alpha2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac betaAR signaling and function, and increased sympatholytic efficacy of a alpha2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.  相似文献   

4.
Male Sprague–Dawley rats were treated intraperitoneally with corn oil, the aryl hydrocarbon receptor (AHR) agonist β‐naphthoflavone (βNF), or the relatively weak AHR agonist α‐naphthoflavone (αNF). Animals treated with βNF experienced a significant loss (12%) of total body mass over 5 days and a dramatic elevation of CYP1A1 mRNA in all of the organs studied. Treatment with αNF had no significant effect on body mass after 5 days and caused only minor increases of liver, kidney, and heart CYP1A1 mRNA. In contrast, lung CYP1A1 mRNA was increased by αNF treatment to levels comparable to that seen with βNF treatment. CYP2E1 mRNA levels were also elevated in liver, lung, kidney, and heart in response to βNF treatment, whereas αNF was without effect. Large increases of CYP1A1‐dependent 7‐ethoxyresorufin O‐deethylation (EROD) activity occurred with microsomes prepared from the tissues of βNF‐treated animals. Comparatively small changes were associated with αNF treatment, with the exception of lung, where EROD activity was increased to approximately 60% of that with βNF treatment. CYP2E1‐dependent p‐nitrophenol hydroxylase (PNP) activity was also increased by βNF treatment in microsomes prepared from kidney (3.1‐fold), whereas αNF was without effect. In contrast, αNF or βNF treatment caused significant decreases of lung microsomal PNP (72% and 27% of corn oil control, respectively) and 7‐pentoxyresorufin O‐deethylation (48% and 17% of corn oil control, respectively) activities, indicating that PNP activity may be catalyzed by P450 isoforms other than CYP2E1 in rat lung. We conclude that βNF and αNF have differential effects on the expression and catalytic activity of CYP1A1 and CYP2E1, depending upon the organ studied. These changes most likely occur as a result of the direct actions of these compounds as AHR agonists, in addition to secondary effects associated with AHR‐mediated toxicity. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 29–40, 1999  相似文献   

5.
The proximal tubule is a frequent target for nephrotoxic compounds due to it's ability to transport and accumulate xenobiotics and their metabolites, as well as by the presence of an organ-selective set of biotransformation enzymes. The aim of the present study was to characterize the activities of different biotransformation enzymes during primary culturing of rat proximal tubular cells (PT cells). Specific marker substrates for determining cytochrome P450 (CYP450) activity of primary cultured PT cells include 7-ethoxyresorufin (CYP1A1), caffeine (CYP1A), testosterone (CY2B/C, CYP3A), tolbutamide (CYP2C) and dextromethorphan (CYP2D1). Activities of the CYP450 isoenzymes decreased considerably during culture with the greatest loss in activity within 24 h of culture. In addition, expression of CYP450 apoprotein, including CYP1A, CYP2C, CYP2D, CYP2E and CYP4A, was detected in microsomes from freshly isolated PT cells by immunoblotting using specific antibodies. CYP2B and CYP3A apoprotein could not be detected. Activity of the phase II biotransformation enzymes GST, GGT, beta-lyase and UGT was determined with 1-chloro-2,4-dinitrobenzene, L-glutamic acid gamma-(7-amido-4-methyl-coumarin), S-(1,1,2,2-tetrafluoroethyl)-L-cysteine and 1-naphthol, respectively, as marker substrates. Activity of the phase II enzymes remained more stable and, in contrast to CYP450 activity, significant activity was still expressed after 1 week of PT cell culture. Thus, despite the obvious advantages of PT cells as an in-vitro model for studies of biotransformation mediated toxicity, the strong time dependency of especially phase I and, to a lesser extent, phase II biotransformation activities confers limitations to their application.  相似文献   

6.
7.
Alpha2-adrenoceptors belong to the group of nine adrenoceptors which mediate the biological actions of the endogenous catecholamines adrenaline and noradrenaline. Studies with gene-targeted mice carrying deletions in the genes encoding alpha2A-, alpha2B- or alpha2C-adrenoceptors have provided new insight into adrenergic receptor biology: (1) In principle, all three alpha2-receptor subtypes may operate as presynaptic inhibitory feedback receptors to control the release of noradrenaline and adrenaline or other transmitters from neurons. (2) Pharmacological effects of non-selective alpha2-ligands could be assigned to specific receptor subtypes, e.g. hypotension, sedation and analgesia are mediated via alpha2A-receptors. (3) Alpha2-adrenoceptor deficient mice have helped to uncover novel and unexpected functions of these receptor, e.g. feedback control of catecholamine release via alpha2C-receptors in adrenal chromaffin cells and control of angiogenesis during embryonic development. (4) Additional pharmacological targets for alpha2-adrenoceptor ligands were identified, e.g. inhibition of cardiac HCN2 and HCN4 pacemaker channels by clonidine.  相似文献   

8.
In many mammalian species, the ovarian steroid hormones estradiol (E(2)) and progesterone (P) act in the hypothalamus and preoptic area to coordinate the timing of female sexual receptivity with ovulation. We study lordosis behavior, an important component of sexual receptivity in rats, and its regulation by E(2) and P as a model system for understanding how hormonal modulation of synaptic neurotransmission influences reproductive physiology and behavior. Our findings suggest that E(2) and P extensively regulate synaptic communication involving the catecholamine norepinephrine (NE) in the hypothalamus. Estrogen priming shifts the balance of postsynaptic NE receptor signaling in the hypothalamus and preoptic area away from beta-adrenergic activation of cAMP synthesis toward alpha(1)-adrenergic signaling pathways. Attenuation of beta-adrenergic signal transduction is achieved by receptor-G-protein uncoupling, apparently due to stable receptor phosphorylation. E(2) modification of alpha(1)-adrenergic signaling includes both increased expression of the alpha(1B)-adrenoceptor subtype and a dramatic, P-induced reconfiguration of the biochemical responses initiated by agonist activation of alpha(1)-adrenoceptors. Among these is the emergence of alpha(1)-adrenergic receptor coupling to cGMP synthesis. We also present evidence that estrogen promotes novel, functional interactions between insulin-like growth factor-1 (IGF-1) and alpha(1)-adrenergic receptor signaling in the hypothalamus and preoptic area. Thus, estrogen amplification of signaling mediated by alpha(1)-adrenoceptors is multifaceted, involving changes in gene expression (of the alpha(1B)-adrenoceptor), switching of receptor linkage to previously inactive intracellular pathways, and the promotion of cross talk between IGF-1 and NE receptors. We propose that this hormone-dependent remodeling of hypothalamic responses to NE maximizes reproductive success by coordinating the timing of the preovulatory release of gonadotropins with the period of behavioral receptivity in female rodents.  相似文献   

9.
Cytochrome P4502E1 (CYP2E1) induction by ethanol contributes to alcoholic liver disease and we found that a mixture of polyunsaturated phosphatidylcholines (PPC), which protects against alcohol-induced liver injury, also decreases CYP2E1. Since dilinoleoylphosphatidylcholine (DLPC) is the major component of PPC, we assessed here whether it is responsible for the protection of PPC by feeding rats for 8 weeks our liquid diet containing ethanol (36% of energy) or isocaloric carbohydrates, with either DLPC (1.5 g/1000 cal), PPC (3 g/1000 cal), or linoleate. CYP2E1 was assessed by Western blots and by two of its enzyme activities: the microsomal ethanol-oxidizing system (MEOS) and p-nitrophenolhydroxylase (PNP). With ethanol, CYP2E1 increased 10-fold, with corresponding rises in PNP and MEOS activities. Compared to linoleate, DLPC significantly decreased cytochrome b(5), total cytochromes P450, CYP2E1 content and its corresponding activities. DLPC decreases ethanol-induced CYP2E1 and should be considered for the prevention of alcoholic liver disease.  相似文献   

10.
While current dogma argues that vitamin D prodrugs require side-chain activation by liver enzymes, recent data suggest that hydroxylation may also occur extrahepatically. We used keratinocytes and recombinant human enzyme to test if the 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) is capable of target cell activation and inactivation of a model prodrug, 1alpha-hydroxyvitamin D2 (1alpha(OH)D2) in vitro. Mammalian cells stably transfected with CYP24A1 (V79-CYP24A1) converted 1alpha(OH)D2 to a series of metabolites similar to those observed in murine keratinocytes and the human cell line HPK1A-ras, confirming the central role of CYP24A1 in metabolism. Products of 1alpha(OH)D2 included the active metabolites 1alpha,24-dihydroxyvitamin D2 (1alpha,24(OH)2D2) and 1alpha,25-dihydroxyvitamin D2 (1alpha,25(OH)2D2); the formation of both indicating the existence of distinct activation pathways. A novel water-soluble metabolite, identified as 26-carboxy-1alpha,24(OH)2D2, was the presumed terminal degradation product of 1alpha(OH)D2 synthesized by CYP24A1 via successive 24-hydroxylation, 26-hydroxylation and further oxidation at C-26. This acid was absent in keratinocytes from Cyp24a1 null mice. Slower clearance rates of 1alpha(OH)D2 and 1alpha,24(OH)2D2 relative to 1alpha,25(OH)2D2 and 1alpha,25(OH)2D3 were noted, arguing for a role of 24-hydroxylated metabolites in the altered biological activity profile of 1alpha(OH)D2. Our findings suggest that CYP24A1 can activate and inactivate vitamin D prodrugs in skin and other target cells in vitro, offering the potential for treatment of hyperproliferative disorders such as psoriasis by topical administration of these prodrugs.  相似文献   

11.
The purpose of this investigation was to assess the effect of chlormethiazole treatment on liver damage in the experimental rat intragastric ethanol-feeding model of alcoholic liver disease. Chlormethiazole has been used in the treatment of alcoholic withdrawal and has been shown to inhibit cytochrome P4502E1. Since treatment of experimental alcoholic liver disease with CYP2E1 inhibitors had an ameliorating effect on liver injury in the rat, chlormethiazole was used to see if it had a similar effect. Rats fed ethanol for 2 months had significantly less liver injury when chlormethiazole was added to the diet, fed intragastrically. The CYP2E1 apoprotein levels, which were increased by ethanol feeding, were also increased when chlormethiazole was fed with ethanol. Chlormethiazole inhibited the increase in the ethanol-induced CYP2E1 activity in vivo, as measured by chlorzoxazone 6-hydroxylation, but did not affect the level of CYP2E1 apoprotein. Likewise, the reduction in proteasome proteolytic enzyme activity produced by ethanol feeding was blunted in chlormethiazole-fed rats. These results support the conclusion that chlormethiazole treatment partially protects the liver from injury by inhibiting CYP2E1 activity in vivo.  相似文献   

12.
In the drug discovery process, the metabolic fate of drugs is crucially important to prevent drug-drug interactions. Therefore, P450 isozyme selectivity prediction is an important task for screening drugs of appropriate metabolism profiles. Recently, large-scale activity data of five P450 isozymes (CYP1A2 CYP2C9, CYP3A4, CYP2D6, and CYP2C19) have been obtained using quantitative high-throughput screening with a bioluminescence assay. Although some isozymes share similar selectivities, conventional supervised learning algorithms independently learn a prediction model from each P450 isozyme. They are unable to exploit the other P450 isozyme activity data to improve the predictive performance of each P450 isozyme's selectivity. To address this issue, we apply transfer learning that uses activity data of the other isozymes to learn a prediction model from multiple P450 isozymes. After using the large-scale P450 isozyme selectivity dataset for five P450 isozymes, we evaluate the model's predictive performance. Experimental results show that, overall, our algorithm outperforms conventional supervised learning algorithms such as support vector machine (SVM), Weighted k-nearest neighbor classifier, Bagging, Adaboost, and latent semantic indexing (LSI). Moreover, our results show that the predictive performance of our algorithm is improved by exploiting the multiple P450 isozyme activity data in the learning process. Our algorithm can be an effective tool for P450 selectivity prediction for new chemical entities using multiple P450 isozyme activity data.  相似文献   

13.
14.
Human 25-hydroxyvitamin D3 (25(OH)D3) 24-hydroxylase (CYP24) cDNA was expressed in Escherichia coli, and its enzymatic and spectral properties were revealed. The reconstituted system containing the membrane fraction prepared from recombinant E. coli cells, adrenodoxin and adrenodoxin reductase was examined for the metabolism of 25(OH)D3, 1alpha,25(OH)2D3 and their related compounds. Human CYP24 demonstrated a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways towards both 25(OH)D3 and 1alpha,25(OH)2D3, whereas rat CYP24 showed almost no C-23 hydroxylation pathway [Sakaki, T. Sawada, N. Nonaka, Y. Ohyama, Y. & Inouye, K. (1999) Eur. J. Biochem. 262, 43-48]. HPLC analysis and mass spectrometric analysis revealed that human CYP24 catalyzed all the steps of the C-23 hydroxylation pathway from 25(OH)D3 via 23S, 25(OH)2D3, 23S,25,26(OH)3D3 and 25(OH)D3-26,23-lactol to 25(OH)D3-26, 23-lactone in addition to the C-24 hydroxylation pathway from 25(OH)D3 via 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23S,25(OH)2D3 to 24,25,26,27-tetranor-23(OH)D3. On 1alpha,25(OH)2D3 metabolism, similar results were observed. These results strongly suggest that the single enzyme human CYP24 is greatly responsible for the metabolism of both 25(OH)D3 and 1alpha,25(OH)2D3. We also succeeded in the coexpression of CYP24, adrenodoxin and NADPH-adrenodoxin reductase in E. coli. Addition of 25(OH)D3 to the recombinant E. coli cell culture yielded most of the metabolites in both the C-23 and C-24 hydroxylation pathways. Thus, the E. coli expression system for human CYP24 appears quite useful in predicting the metabolism of vitamin D analogs used as drugs.  相似文献   

15.
When chlorine is introduced into public drinking water for disinfection, it can react with organic compounds in surface waters to form toxic by-products such as 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX). We investigated the effect of exposure to MX on cytochrome P450 2E1 (CYP2E1)-like activity and total glutathione (GSH) in the liver of the small fish model, medaka (Oryzias latipes). The multi-site carcinogen methylazoxymethanol acetate (MAMAc) was the positive control compound. Both medaka liver microsome preparations and S-9 fractions catalyzed the hydroxylation of p-nitrophenol (PNP), suggesting CYP2E1-like activity in the medaka. Male medaka exposed for 96 h to the CYP2E1 inducers ethanol and acetone under fasted conditions showed significant increases in PNP-hydroxylation activity. Furthermore, total reduced hepatic GSH was reduced in fish fasted for 96 h, indicating that normal feeding is a factor in maintaining xenobiotic defenses. Exposure to MX and MAMAc induced significant increases in hepatic CYP2E1-like activity, however MX exposure did not alter hepatic GSH levels. These data strengthen the role of the medaka as a suitable species for examining cytochrome P450 and GSH detoxification processes and the role these systems play in chemical carcinogenesis.  相似文献   

16.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

17.
18.
A Gulati 《Life sciences》1992,50(2):153-160
Effect of endothelin (ET) on clonidine induced cardiovascular effects was studied in male Sprague-Dawley rats. Clonidine (75 micrograms/kg, iv) produced significant decrease in blood pressure and heart rate. ET-1 (50 ng/kg, iv) pretreatment completely antagonized the hypotension and bradycardia induced by clonidine. ET-2 (50 ng/kg, iv) and ET-3 (50 ng/kg, iv) had similar antagonistic effect on clonidine induced hypotension and bradycardia. The antagonistic effect of ET lasted for several hours, however, 4 hours after ET pretreatment only partial blockade of clonidine induced hypotension and bradycardia was observed. This indicated that the antagonistic effect of ET was reversible. Initial hypertensive response induced by high dose of clonidine (750 micrograms/kg, iv) could not be antagonized by ET-1, ET-2 or ET-3, while phenoxybenzamine, an alpha adrenoceptor antagonist, blocked the hypertensive response of clonidine. Thus, ET has no antagonistic effect on the initial hypertensive response but antagonizes the hypotensive and bradycardic effect induced by clonidine. Clonidine induced hypotension and bradycardia are mediated through central alpha 2 adrenoceptors while hypertension is mediated through peripheral alpha 2 adrenoceptors. It is concluded that central alpha 2 adrenoceptors are different from peripheral alpha 2 adrenoceptors and ET antagonizes the effect of clonidine only on central alpha 2 adrenoceptors but has no antagonistic activity on peripheral alpha 2 adrenoceptors.  相似文献   

19.
The signaling pathways involved in insulin and glucagon regulation of CYP2E1 expression were examined in primary cultured rat hepatocytes. Insulin addition to primary cultured rat hepatocytes for 24 h resulted in an approximately 80% and >90% decrease in CYP2E1 mRNA levels at 1 and 10 nM insulin, respectively, relative to untreated cells. Addition of the phosphatidylinositol 3-kinase inhibitor wortmannin, or the Src kinase inhibitor geldanamycin, prior to insulin addition, inhibited the insulin-mediated decline in CYP2E1 mRNA. In contrast, treatment of cells with glucagon (100 nM), or the cAMP analogue dibutyryl-cAMP (50 microM), for 24 h increased CYP2E1 mRNA levels by approximately 7-fold. Addition of the protein kinase A inhibitor H89 prior to glucagon treatment attenuated the glucagon-mediated increase in CYP2E1 mRNA by approximately 70%. Glucagon (100 nM) opposed the effects of insulin (1 nM) on CYP2E1 mRNA expression and conversely, insulin blocked the effects of glucagon. These data provide compelling evidence for the regulation of CYP2E1 expression via mutually antagonistic signaling pathways involving insulin and glucagon.  相似文献   

20.
The adrenal gland plays a fundamental role in the response to a variety of stress situations. After a stress condition, adrenal medullary chromaffin cells release, by exocytosis, high quantities of catecholamine (epinephrine, EP; norepinephrine, NE), especially EP. Once in the blood stream, catecholamines reach different target organs, and induce their biological actions through the activation of different adrenoceptors. Adrenal gland cells may also be activated by catecholamines, through hormonal, paracrine and/or autocrine system. The presence of functional adrenoceptors on human adrenal medulla and their involvement on catecholamines secretion was not previously evaluated. In the present study we investigated the role of β(1)-, β(2)- and β(3)-adrenoceptors on catecholamine release from human adrenal chromaffin cells in culture. We observed that the β-adrenoceptor agonist (isoproterenol) and β(2)-adrenoceptor agonist (salbutamol) stimulated catecholamine (NE and EP) release from human adrenal chromaffin cells. Furthermore, the β(2)-adrenoceptor antagonist (ICI 118,551; 100 nM) and β(3)-adrenoceptor antagonist (SR 59230A; 100 nM) inhibited the catecholamine release stimulated by isoproterenol and nicotine in chromaffin cells. The β(1)-adrenoceptor antagonist (atenolol; 100 nM) did not change the isoproterenol- neither the nicotine-evoked catecholamine release from human adrenal chromaffin cells. Moreover, our results show that the protein kinase A (PKA), protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and phospholipase C (PLC) are intracellular mechanisms involved in the catecholamine release evoked by salbutamol. In conclusion, our data suggest that the activation of β(2)- and β(3)-adrenoceptors modulate the basal and evoked catecholamine release, NE and EP, via an autocrine positive feedback loop in human adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号