首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ edaphic factors affecting seed germination and seedling emergence of three framework species of Acacia were investigated with the intent of developing fundamental and scalable restoration capacity for Arabian dryland restoration. Direct seeding represents the most efficient means to restore vegetation at the landscape scale and this study provides insight into edaphic and ecological limitations, as well as effective protocols governing the use of native seeds for restoration in hyper-arid environments. The study was conducted in extant Acacia woodland habitat on conserved land (Thumamah Nature Park) in close proximity to Riyadh, Saudi Arabia. Broad-scale direct seeding using un- and pretreated Acacia gerrardii, A. tortilis, and A. ehrenbergiana seed, and two seed burial depths were implemented across three sites with distinct soil surface characteristics. Eight weeks post-sowing, random samples for each species × seed treatment × burial depth combination were excavated, sieved, and categorized as follows: failed to germinate, germinated but died prior to emerging, or successfully emerged. We show that germination and emergence of Acacia gerrardii, A. tortilis, and A. ehrenbergiana were driven by a three-way interaction among species, site, and seed burial depth. Treating seed with the signaling compound Moddus did not have a definitive effect, positive or negative, on any of the species investigated. Acacia gerrardii was the only species that exhibited widespread emergence, though emergence was not consistent across sites or burial depths. Germination was highest in disturbed soil (up to 69% for A. gerrardii), but very few (<2%) successfully emerged; a greater proportion of germinants in sandy soil emerged (up to 44% for A. gerrardii) even though the overall germination was less. Though species-dependent, a 2-cm sowing depth was most effective in sand; while in disturbed soil, sowing depths of 1 and 2 cm were comparable; and no germination was observed in gravelly clay soil. Sandy soil exhibited rapid water infiltration (107.6 mm min?1), and post-sowing surface crusting was a non-factor (0.44 kg cm?2). Disturbed soil exhibited moderate water infiltration (1.46 mm min?1) and post-sowing surface crusting was double that of sand (0.88 kg cm?2) and restrictive on seedling emergence. Gravelly clay exhibited extremely poor water infiltration (0.12 mm min?1), and surface crusting was severe (4.49 kg cm?2) and an order of magnitude greater than sand. The medium-coarse sand fraction, a key driver of the observed soil surface processes, was greatest in sand (55%) and significantly less and uniform in the disturbed (22%) and gravelly clay (22%) soils. Our findings demonstrate that soil surface characteristics and associated processes can dictate ecological processes at depths as shallow as 1–2 cm, and that soil crusts that slow water infiltration and impede seedling emergence rapidly reconstitute after disturbance; both are important considerations for restoring dryland vegetation.  相似文献   

2.
Research focused on the occurrence of Fusarium spp. in atmospheric dust or rainwater is not common. Preliminary studies with four sampling dates in 2007 revealed that several species of Fusarium may also be conveyed by rainwater. In order to determine the regular presence of Fusarium spp. in rainfall water, samples were systematically collected for a year (from October 2009 to October 2010) in three points on the Mediterranean coast of the province of Granada (Spain) 10-km distance between them. Throughout the year of sampling, a total of 179 rainwater samples were collected during every significant rainfall event. Eight different Fusarium species were isolated from the rainwater samples: F. oxysporum (32 %), F. proliferatum (26 %) and F. equiseti (20 %) coincide with previous studies, while F. dimerum (3 %), F. semitectum (4.7 %), F. solani (8 %), F. avenaceum (0.5 %) and F. chlamydosporum (3.7 %) were isolated for the first time from rainwater. Results were consistent with previous surveys conducted 100 km away from the sampling sites. Inoculation of 39 different isolates from five different Fusarium species showed pathogenicity on plants. Disease severity differed depending on the inoculated plant species, which means that rain water can be an effective vector to transport new pathogens into new cultivated areas. This work reveals some epidemiological aspects of Fusarium genus in natural environments. Some of the isolated Fusarium spp. are potential mycotoxin producers, such as zearalenone, fumonisin, moniliformin or nivalenol.  相似文献   

3.
Raised bogs dominated by the vegetation association Ledo-Sphagnetum magellanici Sukopp 1959 em. Neuhäusl 1969 are a valuable and ecologically important plant community that occurs in Central Europe. They develop in impervious depressions with precipitation as the only water source, and are particularly sensitive to drainage, climate change, eutrophication and overgrowing by trees and shrubs. The high pressure of threat justifies taking protective measures. This research focused on the effects of the removal of birch from two bogs, which were dominated by two birch species (Betula pubescens, B. pendula) and also included stands of Scots pine (Pinus sylvestris); the bogs are located in northeastern Poland and showed signs of drying. The trees were removed in early spring 2008. To capture the response to tree cutting, vegetation monitoring was performed for 7 years. The results were compared to pre-cutting environmental conditions (precipitation, temperature, air transpiration). At the first site, which was drained at the beginning of the twentieth century, the ground water level initially decreased; then, from 2010 onwards, the level stabilised and exhibited a negative correlation with the average annual air temperature. While the second site exhibited no significant differences in the ground water table, a correlation with the average annual rainfall was found. At both sites, there was an increase in the coverage of species appropriate for raised bogs, Oxycocco-Sphagnatea Br.-Bl. et R. Tx. 1943, whereas only the second site had significant coverage of these species. These actions improved the habitat conditions and initiated the process of raised bog restoration at that site because Oxycocco-Sphagnatea species cover and frequency increased.  相似文献   

4.
Fine root growth in natural vegetation is difficult to predict due to its regulation by soil and plant factors. Field studies in arid ecosystems show a variety of root responses to soil resources and to plant aboveground phenology that sometimes differ from root responses predicted by controlled experiments. There is a pressing need to cover a greater diversity of plant species and ecological scenarios in field studies. In this paper, we have studied fine roots of Prosopis flexuosa trees living with or without access to phreatic water in an inter-dune valley and a dune flank, respectively, in the Central Monte Desert, Argentina. We have described fine root growth over time and at different depths by rhizotron observations and soil core auger samples in relation to soil water and nutrients, tree crown phenology, plant water and nutrient status. We have found that surface soil moisture from rainfall is the variable that best predicts seasonal topsoil fine root growth. Access to groundwater advanced leaf sprouting with respect to rainfall, but did not advance root growth that stayed linked to rainfall in valley and dune flank trees. Trees without access to phreatic water produced deeper and thicker or denser roots, which is consistent with the poor soil resource content of dunes. Variations in rainfall dynamics due to global climate change may have a particular impact on fine roots and ecosystem processes such as biogeochemistry and carbon budget in dune flank trees as well as in valley trees.  相似文献   

5.
Ferriferous savannas, also known as cangas in Brazil, are nutrient-impoverished ecosystems adapted to seasonal droughts. These ecosystems support distinctive vegetation physiognomies and high plant diversity, although little is known about how nutrient and water availability shape these ecosystems. Our study was carried out in the cangas from Carajás, eastern Amazonia, Brazil. To investigate the N cycling and drought adaptations of different canga physiognomies and compare the findings with those from other ecosystems, we analyzed nutrient concentrations and isotope ratios (δ13C and δ15N) of plants, litter, and soils from 36 plots distributed in three physiognomies: typical scrubland (SB), Vellozia scrubland (VL), and woodland (WD). Foliar δ15N values in cangas were higher than those in savannas but lower than those in tropical forests, indicating more conservative N cycles in Amazonian cangas than in forests. The lower δ15N in savanna formations may be due to a higher importance of mycorrhizal species in savanna vegetation than in canga vegetation. Elevated δ13C values indicate higher water shortage in canga ecosystems than in forests. Foliar and litter nutrient concentrations vary among canga physiognomies, indicating differences in nutrient dynamics. Lower nutrient availability, higher C:N ratios, and lower δ15N values characterize VL, whereas WD is delineated by lower δ13C values and higher soil P. These results suggest lower water restriction and lower P limitation in WD, whereas VL shows more conserved N cycles due to lower nutrient availability. Differences in nutrient and water dynamics among physiognomies indicate different ecological processes; thus, the conservation of all physiognomies is required to ensure the maintenance of functional diversity in this unique ecosystem.  相似文献   

6.

Background

Physical objects like vegetation can influence oviposition by mosquitoes on soil or water substrates. Anopheles gambiae s. l. is generally thought to utilize puddles over bare soil as its prime larval habitat and to avoid standing water populated with vegetation. In Kisian, Kenya near Kisumu, water often pools in grassy drainage areas both during and after periods of infrequent rains, when typical puddle habitats become scarce because of drying. This raised the question of whether An. gambiae has the behavioural flexibility to switch ovipositional sites when puddles over bare soil are unavailable.

Methods

To test whether presence and height of grasses influenced oviposition, wild-caught gravid An. gambiae s. l. were offered paired choices between wet, bare soil and wet soil populated with mixed grasses or grasses of differing height. No-choice tests were also conducted by giving females either grassy soil or bare soil.

Results

In choice tests, females laid four times more eggs on bare, wet soil than soil populated with grasses. However in no-choice tests, egg output was not significantly different whether grasses were present or not. Females laid significantly more eggs on soil populated with short grass than with medium, or tall grass.

Conclusion

This work shows An. gambiae s. l. has the capacity to oviposit into grassy aquatic habitats when typical puddles over bare soil are unavailable. This knowledge will need to be considered in the design and implementation of programmes aimed at reducing malaria transmission by suppression of An. gambiae s. l. immatures.
  相似文献   

7.
Halotydeus destructor and Penthaleus major are species of earth mite commonly found at high densities in agricultural fields in Australia and other parts of the world. These mites pose a risk to a range of winter crops and pastures when seedlings emerge in autumn. In order to predict likely mite pressure, we investigated whether autumn densities in pastures can be determined from agronomic and environmental field variables. For H. destructor, field densities showed little association with a range of vegetation variables but could largely be explained using the variable field type, with high densities present when fields had mixtures of grass, clover and weeds. For P. major, we found a regional effect. In the region where most data were available, P. major field densities were associated with grass abundance, whereas an association with field type was significant but different to that found for H. destructor. For both species, densities were not associated with rainfall, but there was a weak association with soil moisture capacity. We discuss how these results can help in managing these important pest mites.  相似文献   

8.
Very high-severity fires are a component of many fire-prone ecosystems, yet are often viewed as detrimental to vegetation. However, species in such systems are likely to have adapted to persist under a fire regime that includes high-severity fires. We examined how fire severity affects post-fire recruitment and residual seed banks of Acacia species and whether severity may affect plant responses to fire intervals. Nine sites of either high or low burn severity were identified after a large-scale mixed-severity fire in Warrumbungle National Park, south-eastern Australia. Transects were used to sample above-ground woody plant density. Seed bank size was surveyed by soil extraction from two depths and manual searching for seeds. Residual soil seed bank and recruitment were compared across the two burn severities. Acacia seedling density was higher in areas burnt at high severity, indicating that increased severity triggers increased germination from the seed bank. Size of residual seed bank was smaller after high-severity fire, but varied between species, with few Acacia cheelii seeds remaining despite high above-ground abundance. In contrast, A. penninervis retained a small residual seed bank. There was little evidence of negative effects on populations of Acacia species after high-severity burns. However, we found that high fire severity may impact on the ability of a species to persist in response to a subsequent short fire interval. Fire management for maintaining biodiversity needs to consider other key aspects of the fire regime, including severity and season, rather than focusing solely on fire frequency.  相似文献   

9.
Invasive plant species can substantially alter the soil fertility of the ecosystems they invade, and in doing so have the potential to reduce the suitability of the soil for native species. Even after removal of the invader these alterations can inhibit the reestablishment of native species. We evaluated the impact of invasion by the leguminous shrub Ulex europaeus on soil properties on Mauna Kea, HI. We also investigated the effect of efforts to remove U. europaeus and restore native ecosystems in the study area; where the efforts included bulldozing the U. europaeus and planting introduced Cryptomeria japonica to compete with regenerating U. europaeus. Mauna Kea supports a strong rainfall gradient and substantial associated variation in soil properties. We use statistical models to extract the effect of invasion and restoration from the influence of rainfall. We found U. europaeus decreases soil pH, calcium content, base saturation, and labile phosphorus. Restoration efforts over an 11-year period restored the soil’s calcium and phosphorus content to levels comparable to those found in uninvaded soils on Mauna Kea, demonstrating that the effects of U. europaeus on soils are reversible.  相似文献   

10.
Globally, soil CO2 efflux rates (Fs) have been linked to changes in soil water content (SWC), rainfall and temperature and/or productivity. However, within an ecosystem, Fs can vary based on site structure and function, which can be affected by a combination of abiotic and biotic factors. This becomes particularly important when an ecosystem is faced with disturbances, such as drought or fire. Site-specific compensatory responses to disturbances may therefore alter C mineralization, as well as root respiration. Hence, single location Fs estimates may not be a representative for ecosystems across their distributional ranges. We conducted a 6-year study along an edaphic moisture gradient of longleaf pine ecosystems that were maintained with prescribed fire, using eddy covariance and soil respiration measurements to address how Fs varies with changes in ecosystem structure and function, as well as disturbances. Lower air temperatures (Tair) decreased Fs at all sites, but that response was also affected by productivity and SWC. Productivity significantly altered Fs rates at all sites, especially when we accounted for changes in temperature and SWC. Plant regrowth post-fire temporarily increased Fs (10–40%), whereas drought reduced Fs at all sites. Our results show that site productivity, Fs and the degree to which ecosystems adapt to climate variations and disturbance can be site specific. Hence, model forecasting of carbon dynamics would strongly benefit from multi-location measurements of Fs across the distributional range of an ecosystem.  相似文献   

11.
Pollen analyses of spider web samples, collected from the recently planted Tectona grandis (T. grandis, teak)-dominated tropical deciduous forest of Bhulsidih Village, Korba District (Chhattisgarh, central India), shed light on the relationship between the extant vegetation and pollen rain. The study revealed the dominance of pollen of herbs and trees, whereas shrubs, fern spores and algal remains are meagre. Among the tree taxa, Sapotaceae, Syzygium, Holoptelea, Lannea coromandelica, Shorea robusta and Grewia are dominating with moderate to low and intermittent presence of Madhuca indica, Terminalia, Mitragyna, Schleichera, Anacardiaceae, Diospyros, Emblica officinalis and Flacourtia. However, the rest of the forest constituents are either not represented at all despite their presence in the floristics, which could be attributed to their low pollen productivity owing to entomophily as well as their poor pollen preservation pattern. On the other hand, the ground vegetation is represented by the very high frequency of grasses (Poaceae) along with Tubuliflorae, Chenopodiaceae/Amaranthaceae and Cerealia, however, Artemisia, Xanthium, Malvaceae, Caryophyllaceae and Justicia in moderate to lower values. Ferns, which occur abundantly along the adjoining stream banks, are marked by the sporadic retrieval of trilete spores that could be ascribed to the prevailing damp condition around the sampling provenance. The study, in addition to understanding the pollen–vegetation relationship, could also be helpful in aerobiological study, especially in assessing the allergenicity of various pollen grains/spores in the area of investigation, causing bronchial asthma, hay fever (allergic rhinitis/pollinosis), naso-bronchial allergy and other respiratory disorders along with conjunctivitis, contact dermatitis, eczema, food allergies and other health disorders.  相似文献   

12.

Key message

Analysis of sap flux density during drought suggests that the large sapwood and rooting volumes of larger trees provide a buffer against drying soil.

Abstract

The southern conifer Agathis australis is amongst the largest and longest-lived trees in the world. We measured sap flux densities (F d) in kauri trees with a DBH range of 20–176 cm to explore differences in responses of trees of different sizes to seasonal conditions and summer drought. F d was consistently higher in larger trees than smaller trees. Peak F d was 20 and 8 g m?2 s?1 for trees of diameters of 176 and 20 cm, respectively, during the wet summer. Multiple regression analysis revealed photosynthetically active radiation (PAR) and vapour pressure deficit (D) were the main drivers of F d. During drought, larger trees were more responsive to D whilst smaller trees were more responsive to soil drying. Our largest tree had a sapwood area of 3,600 cm2. Preliminary analysis suggests stem water storage provides a buffer against drying soil in larger trees. Furthermore, F d of smaller trees had higher R 2 values for soil moisture at 30 and 60 cm depth than soil moisture at 10 cm depth (R 2 = 0.68–0.97 and 0.55–0.67, respectively) suggesting that deeper soil moisture is more important for these trees. Larger trees did not show a relationship between F d and soil moisture, suggesting they were accessing soil water deeper than 60 cm. These results suggest that larger trees may be better prepared for increasing frequency and intensity of summer droughts due to deeper roots and/or larger stem water storage capacity.
  相似文献   

13.
For terrestrial species, habitat is frequently defined as physical patches of a certain land cover type in a matrix of non-habitat. However, the appropriate definition of habitat quality requires more detailed information on the resources and conditions that are necessary for the maintenance of the species (‘resource-based habitat approach’). In arthropods, their life cycle comprises several clearly differentiated stages that may depend on different resources and conditions for successful development; in turn, males and females may have different habitat requirements due to their different behaviours. Here we examine the habitat quality for males, females and eggs of the butterfly Plebejus argus in a continuous sand dune landscape in southern Spain. For both sexes, abundance was related to host plant density (negatively) and distance to heathland vegetation (a surrogate for higher water availability; negatively for males and hump-shaped for females); and, for males only, positively with flower presence. Egg abundance was positively related to mutualistic ant frequency and flower presence, and negatively to distance to heathland. Hence, female and male adults and eggs of P. argus partly differed in their dependence on resources and conditions, although distance to wetter areas of heathland was the common variable for all models. This suggests that soil humidity is the key variable for P. argus habitat quality, probably through both direct effects on individuals and indirect effects on interacting species (mutualistic ants and nectar sources). As a result, we found a high spatial congruence in habitat quality between males and females, and a moderate congruence between adults and eggs.  相似文献   

14.
In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies.  相似文献   

15.
Data collected from 183 poplar and 102 willow SRC experimental plots, located in Central-North Italy, were subjected to stepwise regression analysis to acquire information on the environmental factors affecting plant survival and productivity in the first two-year rotation cycle. Nine Populus ×canadensis Mönch, eight P. deltoids Bartr. clones and four hybrids of Sali× matsudana Koidz were included in analysis. Independent variables were: annual and seasonal water availability (rainfall and irrigation), annual mean air temperature, soil texture, pH, N and organic matter content, planting density and management intensity. Dependent variables were: a) mean annual yield during the first two-year rotation cycle in tons per hectare per year of dry matter (Odt·ha?1·y?1); b) plant survival at the end of the second year from planting (%). Water availability resulted the main variable driving plant survival and biomass production in both poplar and willow clones. Water availability appeared to be the principal factor affecting the establishment of poplar and willow energy plantations in the Po valley. Possible variations in the rainfall regime consequent to climate changes could seriously influence land suitability to SRC. Experimental data also indicate that choice of planting density may increase the biomass yield during the first two-year especially with P. deltoides clones.  相似文献   

16.
Maritime Spartina spp. are powerful ecosystem engineers that accrete sediment, define shorelines, create habitat, and generate prodigious primary productivity both where they are native and where they have been introduced. Invasive Spartina spp. can compete vigorously with native species, diminish biota, change hydrology, and confound human uses of estuaries. Herbicides have been effective in controlling several Spartina spp. invasions. One of the most recent successes is a 15-year campaign that has virtually eliminated S. alterniflora from the large, century-old invasion in Willapa Bay, WA, USA. Hybridization between native and introduced Spartina spp. has created new species and hybrid swarms. In San Francisco Bay, CA, USA (SF Bay) a complicated situation continues to play out from the purposeful introduction of S. alterniflora, which hybridized with native California cordgrass, S. foliosa. The hybrids spread rapidly and led to a long list of environmental problems, which led to an herbicide program that was successful in greatly diminishing the hybrid and saving the open mud habitat of migratory shorebirds. However, it was belatedly realized that the non-migratory, endangered Ridgeway’s rail uses the tall, dense hybrid Spartina as a surrogate for habitat that was lost during the twentieth century to urbanization and agricultural transformation of marshes around SF Bay. This realization has made difficult the simultaneous management of hybrid Spartina, wildlife conservation, and marsh restoration in San Francisco Bay. Restoration of native vegetation could satisfy the multiple goals of preserving open mud and conserving Ridgeway’s rail.  相似文献   

17.
Regulatory response and interaction of Bradyrhizobium and arbuscular mycorrhizal fungi (AMF) play a vital role in rhizospheric soil processes and productivity of soybean (Glycine max L.). Nitrogen (N) and phosphorus (P) are essential nutrients for plant growth and productivity, the synergistic interaction(s) of AMF and Bradyrhizobium along with rhizospheric beneficial microorganisms stimulate soybean growth and development through enhanced mineral nutrient acquisition (N and P) and improved rhizosphere environment. Such interactions are crucial, especially under low-input eco-friendly agricultural cropping systems, which rely on biological processes rather than agrochemicals to maintain soil quality, sustainability, and productivity. Furthermore, enhancement of N-fixation by root nodules along with AMF-mediated synergism improves plant P nutrition and uptake, and proliferation of phosphate-solubilizing fungi. However, the genetic and/or allelic diversity among native strains, their genes/enzymes and many environmental factors (e.g., soil organic matter, fertilizers, light, temperature, soil moisture, and biotic interactors) affect the interactions between AMF and Bradyrhizobium. New information is available regarding the genetic composition of elite soybean inoculant strains in maximizing symbiotic performance, N-fixing capabilities and depending on N and P status the host-mediated regulation of root architecture. Overall, for sustainable soybean production systems, a deeper understanding of the interaction effects of Bradyrhizobium and AMF co-inoculation are expected in the future, so that optimized combinations of microorganisms can be applied as effective soil inoculants for plant growth promotion and fitness. The objective of this review is to offer insights into the mechanistic interactions of AMF and Bradyrhizobium and rhizopheric soil health, and elucidate the role of environmental factors in regulating growth, development and sustainable soybean productivity.  相似文献   

18.
The effects of vegetation types and environmental factors on carabid beetle (Coleoptera: Carabidae) communities were studied. Carabid beetles were collected using pitfall traps (total 2844 trapping days) and seven microenvironmental factors were measured in four vegetation types: grassland, natural evergreen coniferous forest (Pinus densiflora), deciduous broad-leaved natural forest (Quercus crispula, Betula platyphylla, Alnus japonica, or Fagus crenata), and deciduous coniferous plantation (Larix kaempferi) in cool temperate Japan. These four vegetation types provided a novel comparison between natural forests and plantations because the vast majority of related studies have investigated only deciduous broad-leaved natural forests and evergreen coniferous plantations. PERMANOVA indicated that vegetation types affected carabid community composition. Ordination plots showed that community composition differed greatly between grassland and forest vegetation types, but that community composition in the plantation forest overlapped with that of natural forest types. Characteristics differentiating the grassland included a high proportion of winged species and a low mean carabid body weight. Among the examined environmental factors, litter depth, soil water content, and depth of the soil A-horizon had large effects on carabid communities. These results suggest that the effect of afforestation on carabid communities in cool temperate Japan might be insignificant compared with the effects of cover types (deciduous vs. evergreen) and microenvironmental factors.  相似文献   

19.
Wheat is a crop of global importance that supplies carbohydrates to more than half of the worlds’ population. We examined whether climate change-induced rainfall patterns, which are expected to produce less frequent but heavier rain events, will alter the productivity of wheat and agroecosystem functioning on three different soil types. Therefore, in a full-factorial experiment, Triticum aestivum L. was cultivated in 3-m2 lysimeter plots, each of which contained one of the following soil types: sandy calcaric phaeozem, gleyic phaeozem and calcic chernozem. Predicted rainfall patterns based on the calculations of a regionalised climate change model were compared with the current long-term rainfall patterns, and each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat yield, leaf area index, and plant height at the earlier growth stages; it equally decreased the arbuscular mycorrhizal fungi colonisation of roots and increased the stable carbon isotope signature (δ13C) of wheat leaves. Sandy soils with inherently lower mineralization potential negatively affected wheat growth, harvest index, and yield but stimulated early season root production. The interaction between rainfall and soil type was significant for the harvest index and early wheat development. Our results suggest that changes in rainfall intensity and frequency can significantly affect the functioning of wheat agroecosystems. Wheat production under future rainfall conditions will likely become more challenging as further concurrent climate change factors become prevalent.  相似文献   

20.
Water stress and nitrogen (N) availability are the two main factors limiting plant growth, and the two constrains can interact in intricate ways. Moreover, atmospheric N depositions are altering the availability of these limiting factors in many terrestrial ecosystems. Here, we studied the combined effects of different soil water availability and N supply on photosynthesis and water-use efficiency (WUE) in Picea asperata seedlings cultured in pots, using gas exchange, and stable carbon and nitrogen isotope composition (δ 13C and δ 15N). Photosynthesis under light saturation (A sat) and stomatal conductance (g s) of P. asperata decreased as the soil moisture gradually diminished. Under severe water-stress condition, N addition decreased the A sat and g s, whereas the positive effects were observed in moderate water-stress and well-watered conditions. The effect of N addition on the intrinsic WUE (WUEi) deduced from gas exchange was associated with soil water availability, whereas long-term WUE evaluated by leaf δ 13C only affected by soil water availability, and it would be elevated with soil moisture gradually diminished. Water deficit would restrict the uptake and further transport of N to the aboveground parts of P. asperata, and then increasing δ 15N. Therefore, δ 15N in plant tissues may reflect changes in N allocation within plants. These results indicate that the effect of N enrichment on photosynthesis in P. asperata is largely, if not entirely, dependent on the severity of water stress, and P. asperata would be more sensitive to increasing N enrichment under low soil water availability than under high soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号