首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undaria pinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.  相似文献   

2.
Coastal dune areas are valuable ecosystems, generally impacted by habitat destruction and invasive alien species. In this study, we assessed how human disturbance and invasion by Carpobrotus edulis impact the soils and the establishment of native flora in the north-western coastal regions of Spain. We compared soil characteristics (pH, conductivity, water content, nutrients and enzymatic activities) and native plant as well as C. edulis fitness correlates (germination and early growth) between uninvaded and invaded soils from urban and natural coastal dune areas. We found that human disturbance impacts coastal soils by increasing organic matter and water content, modifying soil nutrients and cycles, and reducing the pH in urban soils. The presence of invasive C. edulis further increases these impacts. These changes in soil characteristics allow for the establishment of the native, but ruderal, Scolymus hispanicus and non-native C. edulis, both of which are not adapted to the typically limiting conditions of coastal dunes. In some instances, the coastal dune endemic, Malcolmia littorea, showed no fitness effects in response to urbanization or the presence of C. edulis. These results suggest that human disturbed coastal areas might be more easily invaded than natural areas. More broadly, our findings of differential responses of different native species to disturbance and invasion, illustrate the need for multi-taxon approaches when assessing the impacts of invasive species.  相似文献   

3.
El Niño Southern Oscillation (ENSO) events have profound consequences for the dynamics of terrestrial ecosystems. Since increased climate variability is expected to favour the invasive success of exotic species, we conducted a field experiment to study the effects that simulated rainy ENSO events in combination with herbivores and shade have on the composition of a semiarid herbaceous community in north-central Chile. We hypothesized that water pulses, such as those associated with rainy ENSO events could trigger significant changes in the relative abundance of exotic and native herbaceous species. Specifically, we predicted an increase in native grasses and a reduction in the abundance of exotic species, especially prostrate forbs, if water pulses were combined with reduced herbivory. We found that herbivory by small mammals, especially introduced European rabbits (Oryctolagus cuniculus) and hares (Lepus europaeus), have an overwhelming effect on species abundance and composition in this semiarid herbaceous community. Herbivore exclusion produced an overall increase in herb density and biomass mostly due to the extraordinary growth of tall native grasses (especially Bromus berterianus) that outcompeted small prostrate forbs (both native and exotic ones), and small exotic grasses (Koeleria pleoides, Schismus arabicus). Our results suggest that it might be possible to enhance the recovery of native grasses by applying efficient herbivore control during rainy years such as those associated with ENSO events although a negative consequence would be the loss of small native forbs, which greatly contribute to the richness of herbaceous communities in semiarid ecosystems.  相似文献   

4.
The invasion of aquatic ecosystems by introduced invasive alien species (IAS) has become a worldwide phenomenon, and often leads to competitive interactions with native species. At high-nutrient levels, native species mostly are outcompeted by the introduced species. We performed an outdoor competition experiment between IAS free-floating Lemna minuta and native Lemna minor in a eutrophicated pond to examine whether the invasive species is the better competitor. We additionally performed an indoor experiment resembling mesotrophic phosphorus (P) conditions to investigate both species’ competitiveness in low P availability and compared with previous experiments at high-nutrient levels. Our results showed that in field conditions, the alien L. minuta was the better competitor. In the mesotrophic indoor condition, however, the native L. minor was the better competitor. Both species produced longer roots in the indoor experiment compared to field conditions. The species’ relative growth rates were also lower in the indoor experiment. A P reduction to mesotrophic condition in the water column thus might reduce invasive L. minuta growth and competitive performance. Additionally, introduction and recovery of L. minor could reduce L. minuta cover, but only following P reduction. Field experiments in mesotrophic ponds are needed to confirm these indoor findings.  相似文献   

5.
During a study comparing the ectomycorrhizal root communities in a native forest with those at the Arnold Arboretum in Massachusetts (USA), the European species Tuber borchii was detected on the roots of a native red oak in the arboretum over two successive years. Since T. borchii is an economically important edible truffle native to Europe, we conducted a search of other roots in the arboretum to determine the extent of colonization. We also wanted to determine whether other non-native Tuber species had been inadvertently introduced into this 140-year-old Arboretum because many trees were imported into the site with intact soil and roots prior to the 1921 USDA ban on these horticultural practices in the USA. While T. borchii was not found on other trees, seven other native and exotic Tuber species were detected. Among the North American Tuber species detected from ectomycorrhizae, we also collected ascomata of a previously unknown species described here as Tuber arnoldianum. This new species was found colonizing both native and non-native tree roots. Other ectomycorrhizal taxa that were detected included basidiomycetes in the genera Amanita, Russula, Tomentella, and ascomycetes belonging to Pachyphlodes, Helvella, Genea, and Trichophaea. We clarify the phylogenetic relationships of each of the Tuber species detected in this study, and we discuss their distribution on both native and non-native host trees.  相似文献   

6.
Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish within the historic P. contorta range and dominant EMF assemblages may be conserved.  相似文献   

7.
Over the last decades human have introduced non-native organisms to Antarctica, including the grass species Poa annua. This non-native grass under constant growth temperatures has been shown negatively affect the growth of the only two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis, under constant growth temperatures. However, whether there are changes in the interaction between these species under warmer conditions is an important question. In cold ecosystems, soil nutrient status directly affects plant responses to increases in temperature and Antarctic soils are highly variable in nutrient supply. Thus, in this study we experimentally assessed the interaction between the non-native Poa with the two native Antarctic vascular plant species at two different temperatures and levels of nutrient availability. Individual mats of the study species were collected in King George Island, and then transported to Concepcion where we conducted competition experiments. In the first experiment we used soil similar to that of Antarctica and plants in competition were grown at two temperatures: 5°/2° and 11°/5 °C (day/night temperature). In a second experiment plants were grown in these two temperature regimes, but we varied nitrogen (N) availability by irrigating plants with Hoagland solutions that contained 8000 or 300 µM of N. Overall, Poa exerted a competitive effect on Deschampsia but only at the higher temperature and higher N availability. At 5°/11 °C the competitive response of Deschampsia to Poa was of similar magnitude to the competitive effect of P. Deschampsia, and the competitive effect was greater with at low N. The competitive effect of Poa was similar to the competitive response of Colobanthus to Poa at both temperatures and N levels. Thus, at low temperatures and N soil content the native Antarctic species might withstand Poa invasion, but this might change with climate warming.  相似文献   

8.
Large areas in the extra-Andean region in the forest - steppe ecotone in “Northwestern Argentinean Patagonia” have been replaced by plantations of the exotic conifer Pinus ponderosa which modify soils physical and chemical factors and alter the biodiversity. Considering that in the region occur saprophytic soilborne actinobacteria that play important role as the fixation of atmospheric nitrogen (N2) in symbiosis with native plant species and the production of bioactive molecules in plants rhizosphere, we aimed to study the effect of the plantation on the abundance of the N2 fixer Frankia and on the genus diversity of cultivable rhizospheric actinobacteria. The study was performed with soils of six paired sites with pine plantations and natural neighbor areas (including steppes or shrublands). Abundance of infective Frankia was estimated by evaluating the nodulation capacity of soils, through a plant bioassay using Ochetophila trinervis as trap plant. Isolation trials for saprophytic actinobacteria were performed by applying chemotactic and successive soils dilutions methods. We concluded that P. ponderosa afforestation affect soil actinobacteria. This was mainly evidenced by a decrease in the Frankia nodulation capacity in O. trinervis, which was related to plantation age, to lower soil carbon and nitrogen content, higher available phosphorus, and to a slight decrease in soils pH. Pine plantation influence on the cultivable saprophytic actinobacteria was less clear. The study highlights the importance of soils as source of Frankia and rhizospheric actinobacteria in relation to disturbance caused by pine plantation in natural environments with native actinorhizal plant species.  相似文献   

9.
10.
Harmonia axyridis Pallas (1773) (Coleoptera: Coccinellidae) is the well-studied system of invasive insect species. Native and invasive parts of the area of H. axyridis are isolated geographically. We studied the species composition and the distribution of bacterial symbionts Spiroplasma and Rickettsia in seven localities of the native area and six localities of the invasive area of H. axyridis. Rickettsia was detected in H. axyridis populations for the first time. We found that the proportion of beetles infected with Rickettsia in native and invasive populations of H. axyridis is about 0.03. Spiroplasma was found only in native populations of H. axyridis. The proportion of infected individuals with Spiroplasma in native populations of H. axyridis is about 0.08. All studied native populations of H. axyridis are infected with Spiroplasma, while all invasive populations are not. We discuss the possible influence of Spiroplasma and Rickettsia in the formation of invasive populations of H. axyridis.  相似文献   

11.
Ailanthus altissima and Robinia pseudoacacia are two aggressive exotic tree species invading riparian ecosystems in Central Spain. We explored their allelopathic potentials as a possible mechanism explaining their success in these ecosystems. Specifically, we aimed (1) to compare the phytotoxic effects of the exotic and native (Fraxinus angustifolia and Populus alba) trees on the fitness of several understory plants coexisting in riparian ecosystems, and (2) to assess the capacity of the riparian soil to modulate the phytotoxic effects. In laboratory bioassays, aqueous leaf litter extracts from the donor tree species at field-realistic concentrations were tested on different fitness indicators of 13 understory target species, using germination paper and soil as substrates in petri dishes. Using germination paper, we found species-specific effects between donor and target species, but the phytotoxicity of the exotic trees as a group was not greater than that of the natives. Nevertheless, the exotic R. pseudoacacia was the most effective donor species reducing the radicle growth of the target species. Over riparian soil substrate, the aqueous leaf litter extracts did not produce any phytotoxic effect on the target species, except in one case. Altogether, our results highlight the importance of using both a native control when assessing the phytotoxicity of nonnative plants and also the natural soil in the modulation of phytotoxic effects. Ignoring both factors in laboratory bioassays would have led to the overestimation of the phytotoxicity of the exotic species as a mechanism contributing to their invasion success.  相似文献   

12.
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m?2 year?1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.  相似文献   

13.
Bromus tectorum can transform ecosystems causing negative impacts on the ecological and economic values of sagebrush steppe of the western USA. Although our knowledge of the drivers of the regional distribution of B. tectorum has improved, we have yet to determine the relative importance of climate and local factors causing B. tectorum abundance and impact. To address this, we sampled 555 sites distributed geographically and ecologically throughout the sagebrush steppe. We recorded the canopy cover of B. tectorum, as well as local substrate and vegetation characteristics. Boosted regression tree modeling revealed that climate strongly limits the transformative ability of B. tectorum to a portion of the sagebrush steppe with dry summers (that is, July precipitation <10 mm and the driest annual quarter associated with a mean temperature >15°C) and low native grass canopy cover. This portion includes the Bonneville, Columbia, Lahontan, and lower Snake River basins. These areas are likely to require extreme efforts to reverse B. tectorum transformation. Our predictions, using future climate conditions, suggest that the transformative ability of B. tectorum may not expand geographically and could remain within the same climatically suitable basins. We found B. tectorum in locally disturbed areas within or adjacent to all of our sample sites, but not necessarily within sagebrush steppe vegetation. Conversion of the sagebrush steppe by B. tectorum, therefore, is more likely to occur outside the confines of its current climatically optimal region because of site-specific disturbances, including invasive species control efforts and sagebrush steppe mismanagement, rather than climate change.  相似文献   

14.
Perennial C4 grasses, especially Miscanthus sinensis, are widely distributed in the degraded lands in South China. We transplanted native and exotic tree seedlings under the canopy of M. sinensis to assess the interaction (competition or facilitation) between dominant grass M. sinensis and tree seedlings. The results of growth, chlorophyll fluorescence, and ultrastructure showed that negative effects may be stronger in perennial dominant grass M. sinensis. Although M. sinensis buffered the air temperature, improved soil structure, and increased soil phosphorus content, these beneficial effects were outweighed by the detrimental effect, especially overshading. To ensure the establishment of target native species in M. sinensis communities in degraded lands of South China, restoration strategies should include removing aboveground vegetation, planting target species seedlings in openings to reduce the effects of canopy shading, and/or selecting competition-tolerant target species. Also, seedlings of exotic species used in restoration engineering cannot be directly planted under the canopy of M. sinensis.  相似文献   

15.
Recent advances in landscape ecology have revealed the importance of landscape structure on insect species diversity and composition. We investigated how landscape structure and land use influence species compositions of Cheilosia and Merodon (Diptera: Syrphidae); two phytophagus genera of hoverflies. Our study shows that Shannon’s Diversity Index, Connectance Index, Grazing Intensity, Mean Fractal Dimension Index and Percentage of Agricultural Patches explained 38.6% of the variance in species composition at a 2 km scale, with the total ordination being significant (P?=?0.04, Monte Carlo test, 499 permutations). Merodon and Cheilosia species differ in their responses to land-use change and connectivity, with the latter genus being positively correlated with connectivity and negatively correlated with all other variables. We conclude that connectivity is the primary factor affecting Cheilosia, while most Merodon species demonstrated greater resistance to changes in human-modified ecosystems. Our results suggest that different management efforts, focused on land-use intensity (grazing) or connectivity, seem to be appropriate when trying to conserve these taxa.  相似文献   

16.
Native ecosystem engineers that add physical structure to ecosystems can facilitate invasive species. In this study we determined the effects of the native tube-forming serpulid worm, Galeolaria caespitose on the recruitment of the invasive New Zealand porcelain crab, Petrolisthes elongatus, and whether invasive crab recruitment was related to the recruitment of native species. P. elongatus is abundant beneath intertidal rocks around Tasmania, southern Australia, and the underside of these rocks is usually covered with a calcareous matrix formed by the serpulid. We used an experimental approach to investigate whether rocks, serpulids on the underside of rocks and adult P. elongatus influenced the recruitment P. elongatus and native communities. P. elongatus and native invertebrates only recruited in the presence of rocks indicating the importance of rock as primary recruitment habitat. Moreover, the presence of serpulids on the underside of rocks significantly increased the recruitment of P. elongatus and native invertebrates compared to rocks without serpulids. Rocks with higher densities of adult P. elongatus at the end of the experiment also had higher densities of P. elongatus recruits. The density of P. elongatus recruits did not influence native species richness and abundance although there was some evidence that high P. elongatus recruitment was correlated with shifts in native community structure. We have shown that a native ecosystem engineer facilitates recruitment of an invasive crab but this does not appear to influence the recruitment of native species.  相似文献   

17.
Australian species of the genus Acacia are amongst the most invasive trees. As nitrogen fixers, they are able to invade oligotrophic ecosystems and alter ecosystem functioning to their benefit. We aimed to answer three questions: How does early Acacia invasion influence nitrogen and light in a sandy savanna? How does early Acacia invasion impact biodiversity? Does early invasion alter ecosystem functioning towards the dominance of Acacia? We analyzed (using generalized linear mixed models and richness estimators) paired plots focused on plants of Acacia mangium (Fabaceae) and plants of Marcetia taxifolia (Melastomataceae) by taking hemispherical photos and sampling plants, leaves and soil for measurements of light, richness, leaf nitrogen, leaf δ15N, soil nitrogen and soil coarse sand. The results suggest that early Acacia invasion alters the control of soil and of leaf nitrogen and increases shading, enabling a much wider range of light variation. The δ15N results suggest that the nitrogen taken up by Acacia is transferred to neighboring plants and influences the light environment, suggesting facilitation. The enrichment of plant species observed during early Acacia invasion is consistent with the wider range of light variation, but the forecasted leaf nitrogen conditions during the established phase of Acacia invasion might cause loss of light-demanding species because of increased shading. If early Acacia invasion turns into an established phase with highly increased shading, Acacia seedlings might be favored and ecosystem functioning might change towards its dominance.  相似文献   

18.
Introduced non-native fishes can cause considerable adverse impacts on freshwater ecosystems. The pumpkinseed Lepomis gibbosus, a North American centrarchid, is one of the most widely distributed non-native fishes in Europe, having established self-sustaining populations in at least 28 countries, including the U.K. where it is predicted to become invasive under warmer climate conditions. To predict the consequences of increased invasiveness, a field experiment was completed over a summer period using a Control comprising of an assemblage of native fishes of known starting abundance and a Treatment using the same assemblage but with elevated L. gibbosus densities. The trophic consequences of L. gibbosus invasion were assessed with stable isotope analysis and associated metrics including the isotopic niche, measured as standard ellipse area. The isotopic niches of native gudgeon Gobio gobio and roach Rutilus rutilus overlapped substantially with that of non-native L. gibbosus, and were also substantially reduced in size compared to ponds where L. gibbosus were absent. This suggests these native fishes shifted to a more specialized diet in L. gibbosus presence. Both of these native fishes also demonstrated a concomitant and significant reduction in their trophic position in L. gibbosus presence, with a significant decrease also evident in the somatic growth rate and body condition of G. gobio. Thus, there were marked changes detected in the isotopic ecology and growth rates of the native fish in the presence of non-native L. gibbosus. The implications of these results for present and future invaded pond communities are discussed.  相似文献   

19.
Non-native Spartina spp. have invaded many coastal saltmarshes worldwide. Introduced Spartina may cause problems like displacement of native vegetation and hybridisation with native species, leading to changes to relevant ecosystem services and saltmarsh geomorphology. Here we report the extensive and so far overlooked replacement of the native Spartina maritima by non-native S. anglica and S. townsendii along 400 km of the coast of the north-western Adriatic Sea (Mediterranean Sea). We analysed the distribution of both native and non-native Spartina spp. along the six main saltmarsh areas in the region, and produced maps of their presence by using a combination of genetic tools, morphological analysis and geotagged photographs, complemented with field observations. We also reviewed historical herbaria from the region to explore when the first non-native introductions could have occured. We found that S. anglica and S. townsendii are unexpectedly widespread, having established along the whole study region, in one lagoon totally replacing the local native species. Its introduction happened virtually unnoticed, and misidentified herbarium specimens date back as early as 1987. We discuss the ecological implications of this overlooked extensive replacement, and the need for a comprehensive assessment of the status of the saltmarshes in this region, both to protect the few remaining patches of the native S. maritima and control the spread of the non-native species across the Mediterranean Sea.  相似文献   

20.
Common carp (Cyprinus carpio, carp) are a widespread and ecologically destructive invasive fish species. Carp management is critical for maintaining healthy aquatic ecosystems, and many control options are available, but most have proven to be ineffective. Carp abundances have increased at The Nature Conservancy’s Emiquon Preserve, Illinois, since its restoration in 2007 despite management efforts to suppress this species. We conducted a comparative diet study in Illinois, Tennessee, and Wisconsin to test whether bowfin (Amia calva), spotted gar (Lepisosteus oculatus, gar), and largemouth bass (Micropterus salmoides) commonly preyed upon carp. We focused on bowfin and gar because they are hypoxia-tolerant, similar to carp. We also assessed whether specific fish community characteristics were correlated with carp relative abundances. We found no evidence that bowfin, gar, and bass consumed large numbers of carp. However, carp may be limited in some ecosystems (e.g., Reelfoot Lake, Tennessee) through alternative mechanisms associated with bowfin, gar, bass, and bluegill (Lepomis macrochirus) included in a diverse native fish community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号