首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate the invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America were compared using the amplified fragment length polymorphisms (AFLP's). An analysis of molecular variance showed that a significant part (10%) of the total genetic variations between all individuals could be explained by native or invasive origin.Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native sources in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.  相似文献   

2.
Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre‐ and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.  相似文献   

3.
Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.  相似文献   

4.
A national approach has been developed to the problem of invasive marine species (IMS) in the Australian marine environment. Fifty-five species were listed as posing significant threats to Australia. A 2005 analysis of the scientific literature concluded that the Asian green mussel Perna viridis (Linnaeus, 1758) poses the greatest threat to Australia. The mussel has in fact successfully invaded many areas of the world’s oceans. Despite the numerous and varied opportunities for P. viridis to be distributed to northern Australia it has not established a known population on the continent, perhaps suggesting there are biological factors inhibiting its establishment. The invasion success of P. viridis in many parts of the world and its failure so far to establish in Australia make the species ideal for testing theories of the factors determining invasion success. Such research will allow a reconsideration of the invasion threat the species poses to the Australian marine environment.  相似文献   

5.
Carp (Cyprinus carpio) as a powerful invader in Australian waterways   总被引:3,自引:0,他引:3  
1. The invasion of carp (Cyprinus carpio L.) in Australia illustrates how quickly an introduced fish species can spread and dominate fish communities. This species has become the most abundant large freshwater fish in south‐east Australia, now distributed over more than 1 million km2. 2. Carp exhibit most of the traits predicted for a successful invasive fish species. In addition, degradation of aquatic environments in south‐east Australia has given them a relative advantage over native species. 3. Derivation of relative measures of 13 species‐specific attributes allowed a quantitative comparison between carp and abundant native fish species across five major Australian drainage divisions. In four of six geographical regions analysed, carp differed clearly from native species in their behaviour, resource use and population dynamics. 4. Climate matching was used to predict future range expansion of carp in Australia. All Australian surface waters appear to be climatically suitable for carp. 5. This assessment strongly reinforces the need for immediate management of carp in Australia to include targeted control of human‐assisted dispersal, such as use of carp as bait by anglers, distribution to new locations by anglers and the use of the ‘Koi’ strain in the aquarium industry. 6. Given their historical spread, dispersal mechanisms and ecological requirements, the expansion of carp across most of the remainder of Australia is to be expected.  相似文献   

6.
【目的】调查北京地区鱼类多样性和群落分布及评估外来鱼种的入侵风险。【方法】选取北京地区水库、湖泊和河流3种水体类型共33个采样点,于2020年6月10—17日开展水生态监测,利用环境DNA宏条形码技术对各样点的鱼类多样性和群落结构进行监测和分析,对目前北京地区水生态系统中本地鱼种和外来鱼种进行分类汇总,并评估典型外来入侵鱼种的入侵风险。【结果】本次调查共检测到52种淡水鱼类,隶属于7目22科43属。首先,物种多样性和群落结构(主坐标PCOA分析和相似性ANOSIM分析)结果表明,水库、湖泊和河流3种水体类型的所有鱼类物种多样性和群落结构没有显著差异,不同水体类型中鱼类物种存在同质化现象。优势度分析结果显示,3种水体类型的优势种绝大部分是交叠的,不同水体类型特有的优势种较少。山区自然水体样点的鱼类物种多样性和生物量高于城区各样点,表明人类活动和城市化进程等可能对北京市河流鱼类多样性和群落空间分布产生影响。其次,通过与历史记载比较,北京地区的本地鱼类多样性呈下降趋势。本次检测到39种北京地区的本地原生鱼种,远远低于历史记载(83种)。此外,本次调查发现北京地区外来鱼种的比例大大增加,共检测到13种外来鱼种。其中,尼罗罗非鱼、大口黑鲈、蟾胡鲶、加蓬胡鲶、饰妆铠弓鱼和坦噶尼喀口孵非鲫6种属于外来入侵鱼种。最后,借助FISK V2指标体系对外来入侵鱼类入侵风险进行评估,结果表明,上述6种外来入侵鱼种在北京地区均具有高入侵风险,可对当地物种多样性产生严重影响,需密切关注其种群动态。【结论】本研究利用环境DNA宏条形码技术对北京地区的鱼类多样性开展调查,有助于了解现阶段北京地区鱼类资源的本底数据,同时为原生鱼类的保护和外来入侵鱼类的监管提供科学指导。  相似文献   

7.

Aim

Directly or indirectly, humans select the plants that they transport and introduce outside of species native ranges. Plants that have become invasive may therefore reflect which species had the chance to invade, rather than which species would become invasive given the chance. We examine characteristics of failed introductions, along with invasion successes, by investigating (a) variation in plant characteristics across invasion stages, and (b) how observed characteristics predict the likelihood of species moving through invasion stages.

Location

Australia.

Time period

1770s to present.

Major taxa studied

34,650 plant species, across 424 families.

Methods

We used a comprehensive list of 34,650 plant species that are known to have been introduced to Australia, 4,081 of which are classified as naturalized and 428 as invasive. We represent plant characteristics with categorical growth forms, three functional traits (plant height, seed mass, and specific leaf area) and three factors related to species introduction histories (native regions, purpose, and minimum residence times).

Results

(a) The types of species introduced determine the types of species that naturalize and become invasive; (b) species introduction histories predict the likelihood of species moving through invasion stages; and (c) the numbers of species naturalizing (~15%) and becoming invasive (~15%) slightly exceeds expectation from the “tens rule”, which expects that 10% of introduced species naturalize and 10% become invasive.

Main conclusions

Our findings are significant for global biosecurity, indicating that functional traits alone cannot be used to predict a species' risk of becoming invasive. Rather, evidence suggests that characteristics of species introductions—specifically, a longer time-lag since first introduction and more pathways of introduction—define the relative risks of species moving through invasion stages. This is important for assessing future invasion risks, as future introductions may differ from those of the past. Our work highlights the need to reduce the number of species introduced.  相似文献   

8.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

9.
Biological invasion science lacks standardised measures of invasion success that would provide effective prioritisation of invasive species and invaded areas management. Prevalence (area of occupancy) of invasive species is often used as proxy of their success but this metric ignores the extent to which a species fills its potential distribution. This study aims to estimate the performance of invasive tree species by computing the ratio between the compressed canopy area (CCA), assessed through remote sensing, and their potential distribution, estimated using invasive species distribution modelling. This index of ‘range filling’ (RF) has applicability to a broad set of invasive plant species in any biome. A case study is provided using the invasive African tulip tree Spathodea campanulata (Bignoniaceae) on three small tropical oceanic islands (South Pacific) exhibiting different invasion levels to test for differences between CCA and RF. The results show that the RF of Spathodea campanulata varied within islands depending on elevation but not proportionally to the CCA of the species. Another key result was that the RF of the species and its CCA provided different between-island perspectives on the invasions and lead to distinct ranking among islands to prioritise for management. Therefore, managers should disregard species’ prevalence as a measure of success and rather weight it with potential distribution to quantify how an invader is performing in a given environment.  相似文献   

10.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

11.
We apply the concept of biodiversity hotspot analysis (the identification of biogeographical regions of high species diversity) to identify invasion hotspots – areas of potentially suitable climate for multiple non‐native plant species – in Australia under current and future climates. We used the species distribution model Maxent to model climate suitability surfaces for 72 taxa, recognized as ‘Weeds of National Significance’ (WoNS) in Australia, under current and projected climate for 2020 and 2050. Current climate suitability layers were summed across all 72 species, and we observed two regions of high climatic suitability corresponding to the top 25th percentile of combined climatic suitability values across Australia. We defined these as potential invasion hotspots. Areas of climatic suitability equivalent to the hotspot regions were identified in the composite maps for 2020 and 2050, to track spatial changes in the hotspots over the two time steps. Two potential invasion hotspot regions were identified under current and projected climates: the south west corner of Western Australia (SW), and south eastern Australia (SE). Herbarium data confirmed the presence of 73% and 99% of those species predicted to be in each hotspot respectively, suggesting that the SE has greater invasion potential. The area of both hotspots was predicted to retract southward and towards the coast under future climate scenarios, reducing in size by 81% (SW) and 71% (SE) by 2050. This reduction was driven by the dominance of southern temperate invasive plant species in the WoNS list (47 of the 72), of which 44 were predicted to experience reductions in their bioclimatic range by 2050. While climate is likely to become less suitable for the majority of WoNS in the future, potential invasion hotspots based on climate suitability are likely to remain in the far south of eastern Australia, and in the far south west of Western Australia by 2050.  相似文献   

12.
Aim Niche conservatism is key to understanding species responses to environmental stress such as climate change or arriving in new geographical space such as biological invasion. Halotydeus destructor is an important agricultural pest in Australia and has been the focus of extensive surveys that suggest this species has undergone a niche shift to expand its invasive range inland to hotter and drier environments. We employ modern correlative modelling methods to examine niche conservatism in H. destructor and highlight ecological differences between historical and current distributions. Location Australia and South Africa. Methods We compile comprehensive distribution data sets for H. destructor, representing the native range in South Africa, its invasive range in Australia in the 1960s (40 yr post‐introduction) and its current range in Australia. Using MAXENT, we build correlative models and reciprocally project them between South Africa and Australia and investigate range expansion with models constructed for historical and current data sets. We use several recently developed model exploration tools to examine the climate similarity between native and invasive ranges and subsequently examine climatic variables that limit distributions. Results The invasive niche of H. destructor in Australia transgresses the native niche in South Africa, and the species has expanded in Australia beyond what is predicted from the native distribution. Our models support the notion that H. destructor has undergone a more recent range shift into hotter and drier inland areas of Australia since establishing a stable distribution in the 1960s. Main conclusions Our use of historical and current data highlights that invasion is an ongoing dynamic process and demonstrates that once a species has reached an established range, it may still expand at a later stage. We also show that model exploration tools help understand factors influencing the range of invasive species. The models generate hypotheses about adaptive shifts in H. destructor.  相似文献   

13.
Of the large number of exotic plant species that become naturalized in new geographic regions, only a subset make the transition to become invasive. Identifying the factors that underpin the transition from naturalization to invasion is important for our understanding of biological invasions. To determine introduction‐history correlates of invasiveness among naturalized plant species of Australia, we compared geographic origin, reason for introduction, minimum residence time and growth form between naturalized non‐invasive species and naturalized invasive plant species. We found that more invasive species than expected originated from South America and North America, while fewer invasive species than expected originated from Europe and Australasia. There was no significant difference between invasive and non‐invasive species with respect to reason for introduction to Australia. However, invasive species were significantly more likely to have been resident in Australia for a longer period of time than non‐invasive species. Residence times of invasive species were consistently and significantly higher than residence times of non‐invasive species even when each continent of origin was considered separately. Furthermore, residence times for both invasive and non‐invasive species varied significantly as a function of continent of origin, with species from South America having been introduced to Australia more recently on average than species from Europe, Australasia and North America. We also found that fewer invasive species than expected were herbs and more invasive species than expected were primarily climbers. Considered together, our results indicate a high propensity for invasiveness in Australia among exotic plant species from South America, given that they appear in general capable of more rapid shifts to invasiveness than aliens from other regions. Furthermore, our findings support an emerging global generality that introduction‐history traits must be statistically controlled for in comparative studies exploring life‐history and ecological correlates of invasion success.  相似文献   

14.
Increasing emphasis has been placed on identifying traits of introduced species which predispose them to invade, and characteristics of ecosystems which make them susceptible to invasion. Habitat disturbance such as floods, fires and tree-falls may make ecosystems more prone to invasion. However, in this study the absence of fire was considered to be a factor in facilitating the invasion potential of a Madagascan endemic, Bryophyllum delagoense. Fire trials in South Africa killed 89 and 45% of B. delagoense plants in a high and low intensity controlled fire, respectively, with tall plants and those growing in clumps more likely to escape being killed. A reduction in the incidence and intensity of fires may therefore facilitate the invasion of B. delagoense and contribute to its invasive potential. Overgrazing, which reduces the frequency and intensity of fires probably facilitates the invasion of large and small succulent species. In South Africa, B. delagoense is still considered to be a minor weed or garden escape, despite its introduction to southern Africa 175 years earlier than in Australia, where it is extremely invasive. However, other succulents such as Opuntia species have become invasive on both continents, confounding our hypothesis that fire may be inhibiting B. delagoense from becoming invasive in southern Africa. However, closer analysis of Opuntia literature indicates that smaller species, similar in size to B. delagoense, are more likely to be killed, even by low intensity fires. We speculate that B. delagoense is more invasive in Australia because of a reduction in the frequency and intensity of fires and that fire is, amongst other factors, largely responsible for inhibiting its invasion potential in southern Africa.  相似文献   

15.
As a result of their rapid expansion and large larval host range, true fruit flies are among the world's most important agricultural pest species. Among them, Ceratitis capitata has become a model organism for studies on colonization and invasion processes. The genetic aspects of the medfly invasion process have already been analysed throughout its range, with the exception of Australia. Bioinvasion into Australia is an old event: medfly were first captured in Australia in 1895, near Perth. After briefly appearing in Tasmania and the eastern states of mainland Australia, medfly had disappeared from these areas by the 1940s. Currently, they are confined to the western coastal region. South Australia seems to be protected from medfly infestations both by the presence of an inhospitable barrier separating it from the west and by the limited number of transport routes. However, numerous medfly outbreaks have occurred since 1946, mainly near Adelaide. Allele frequency data at 10 simple sequence repeat loci were used to study the genetic structure of Australian medflies, to infer the historical pattern of invasion and the origin of the recent outbreaks. The combination of phylogeographical analysis and Bayesian tests showed that colonization of Australia was a secondary colonization event from the Mediterranean basin and that Australian medflies were unlikely to be the source for the initial Hawaiian invasion. Within Australia, the Perth area acted as the core range and was the source for medfly bioinvasion in both Western and South Australia. Incipient differentiation, as a result of habitat fragmentation, was detected in some localized areas at the periphery of the core range.  相似文献   

16.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

17.
郦珊  陈家宽  王小明 《生物多样性》2016,24(6):672-1213
生物入侵已经成为全球面临的三大环境问题之一。鱼类入侵现象也随全球经济一体化的进程日益严重。本文综述了全球淡水鱼类入侵的现状和研究进展, 包括鱼类入侵的定义及分布、入侵途径和机制、产生的生态和社会经济影响以及预防措施等。据统计, 目前全球外来鱼类达624种, 该数量超过30年前的两倍。外来鱼类主要通过水产养殖(51%)、观赏渔业(21%)、休闲垂钓(12%)、渔业捕捞运输(7%)等多种途径被引进。入侵鱼类对本地种产生了捕食、种内种间竞争、杂交和疾病传播等负面影响, 破坏本地生态系统, 但是其正面的生态及社会经济影响也不可忽略。近20年来全球鱼类入侵日益受到重视, 相关论文发表数量翻了8倍。值得提出的是, 近10年来全球鱼类入侵风险评价系统的研究显著增加, 一些鱼类入侵模型已应用于五大洲的多个国家。我国淡水外来鱼类共计439种。然而, 我国关于鱼类入侵的研究起步较晚, 发表文献数仅占全球的3.7%, 且主要研究方向仍集中在入侵物种的分布及生物学特性等基础研究上, 缺乏对于鱼类入侵机制及风险评价预测的研究。因此, 我们建议: (1)开展全国范围的本底调查并建立数据库, 实现数据共享, 明确鱼类入侵的历史与分布现状; (2)联合多个政府部门和机构, 对鱼类入侵进行长期观测, 从整个水生生态系统的角度出发, 深入了解其入侵机制及其产生的正面和负面生态和社会经济影响; (3)加强增殖放流的科学研究和管理; (4)构建区域性外来鱼类入侵风险评价系统, 有效预测鱼类入侵活动, 评价入侵种的危害, 并为相关政府部门的决策提供科学依据。  相似文献   

18.
Correct identification of the source population of an invasive species is a prerequisite for testing hypotheses concerning the factors responsible for biological invasions. The native area of invasive species may be large, poorly known and/or genetically structured. Because the actual source population may not have been sampled, studies based on molecular markers may generate incorrect conclusions about the origin of introduced populations. In this study, we characterized the genetic structure of the invasive ladybird Harmonia axyridis in its native area using various population genetic statistics and methods. We found that native area of H. axyridis most probably consisted of two geographically distinct genetic clusters located in eastern and western Asia. We then performed approximate Bayesian computation (ABC) analyses on controlled simulated microsatellite data sets to evaluate (i) the risk of selecting incorrect introduction scenarios, including admixture between sources, when the populations of the native area are genetically structured and sampling is incomplete and (ii) the ability of ABC analysis to minimize such risks by explicitly including unsampled populations in the scenarios compared. Finally, we performed additional ABC analyses on real microsatellite data sets to retrace the origin of biocontrol and invasive populations of H. axyridis, taking into account the possibility that the structured native area may have been incompletely sampled. We found that the invasive population in eastern North America, which has served as the bridgehead for worldwide invasion by H. axyridis, was probably formed by an admixture between the eastern and western native clusters. This admixture may have facilitated adaptation of the bridgehead population.  相似文献   

19.
《植物生态学报》2013,24(6):672
Biological invasion is now considered one of the three major environmental issues worldwide. Freshwater fish invasion becomes more serious with globalization of the world economy. We reviewed the current status of global freshwater fish invasions and discussed the definitions, distributions, introduction pathways, mechanisms, ecological and economic impacts, and risk assessments of freshwater fish invasions. Non-native fish are mainly introduced through food aquaculture (51%), as ornamental fish (21%), or for sport fishing (12%) and fisheries (7%). The number of introduced fish has reached 624 species, doubled the number found thirty years ago. Successful invasions may bring many negative ecological consequences, such as predation, hybridization, structure and function alteration of local freshwater ecosystems, as well as diseases transmission. However, it also brings positive biological and economic values. The number of fish invasion studies has increased eight times over the last 20 years, with studies mainly focusing on biology and the biological impact of invasive fish species. Risk assessments of freshwater fish invasions were studied over the last 10 years, and fish invasiveness screening models have been applied in countries of five continents. The number of non-native freshwater fish in China totaled 439. However, research papers on freshwater fish invasions in China was only 3.7% of the global total, and these researches were mainly on the distribution and biology of invasive fish species, and very few studies included risk assessments. Therefore, we suggest investigating the history, distribution, and mechanisms of invasive species at the national level, evaluating both the positive and negative effects of freshwater fish invasions, and also reinforcing studies of risk assessments in China.  相似文献   

20.
Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world. We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation. We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号