首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The electronic and geometric structures of tetracyclo[5.3.0.02,6.03,10]deca-4,8-diene (hypostrophene) have been investigated by ab initio and DFT/B3LYP methods using the 6-31G* and 6-311G* basis sets. The double bonds of hypostrophene are endo-pyramidalized. The cationic intermediates and products formed in the addition reaction have been investigated using the HF/6-311G*, HF/6-311G**, and B3LYP/6-311G* methods. The bridged bromonium cation was more stable than the U-type cation. Considering that the bridged cation does not isomerize to the less stable U-type cation, it is not possible for the U-type product to be obtained in the reaction. The bridged bromonium cation transformed into the more stable N-type cation and the N-type product was obtained via this cation. The thermodynamic stability of the exo, exo and exo, endo isomers of the N-type dibromide molecule were almost identical. The N-type product was 16.6 kcal mol−1 more stable than the U-type product. Figure General energy diagram of the hypostrophene–bromine (HS–Br2) system (kcal mol−1) (MP2/6-311G*//HF/6-311G*)  相似文献   

2.
The ONIOM2 (B3LYP/6–31G (d, p): PM3) and B3LYP/6–31G (d, p) methods were applied to investigate the interaction between STI-571 and abelson tyrosine kinase binding site. The complex of N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)- phenyl]-benzamide (part of STI-571) and related 16 amino acid residues were found at B3LYP/6–31G (d, p) level to have hydrogen bonds and π....π stacking interaction, their binding energy via HAF optimization was −20.4 kcal mol−1. The results derived from this study agreed well with the reported observation. Figure Optimized structure of STI-571 and Thr315 in abelson tyrosine kinase based on ONIOM2 method  相似文献   

3.
The energetics of the Cope rearrangement of 17 germacrane sesquiterpenoids to their respective elemane forms have been calculated using both density functional theory (B3LYP/6-31G*) and post Hartee-Fock (MP2/6-31G**) ab initio methods. The calculations are in qualitative agreement with experimentally observed Cope rearrangements, but the two methods give slightly different results. MP2 calculations generally show more favorable elemene energies compared to the respective germacrenes (by around 3–4 kcal mol−1) and smaller activation energies (by 2–3 kcal mol−1). Additionally, neither method is accurate enough to consistently reproduce the germacrene/elemene equilibrium. Apparently, the generally small energy differences between the two forms in these sesquiterpenoids cannot be adequately reproduced at these levels of calculation. Figure The Cope rearrangement of the germacrane sesquiterpenoid bacchascandon to the elemane shyobunone  相似文献   

4.
A theoretical analysis of the nature of the interactions in dibenzo[24]crown-8 (DB24C8)-n-dibutylammonium (DBM)—pseudorotaxane complex at the MP2 and DFT levels shows that the main contribution to the binding energy is the electrostatic interaction with moderate (20–25%) correlation stabilization. The total binding energy in the DB24C8-DBM complex represents a sum of the binding energies of two NH–O and one CH–O hydrogen bonds and the latter constitutes about 25% of the total interaction energy, giving the total binding energy of −41.2 kcal mol−1 at the BHandHLYP/6-311++G** level. Deprotonation of the DB24C8-DBM complex reduces the binding energy by some 50 kcal mol−1, giving metastable complexes DB24C8-DBA-1 or DB24C8-DBA-2, which will dissociate to give free crown ether and n-dibutylamine because of the strong exchange repulsion that prevails in neutral complexes. Figure Formation of DB24C8-DBM pseudorotoxane complex  相似文献   

5.
The recently introduced multipole approach for computing the molecular electrostatic potential (MEP) within the semiempirical neglect of diatomic differential overlap (NDDO) framework [Horn AHC, Lin Jr-H., Clark T (2005) Theor Chem Acc 114:159–168] has been used to obtain atomic charges of nearly ab initio quality by scaling the semiempirical MEP. The parameterization set comprised a total of 797 compounds and included not only the newly parameterized AM1* elements Al, Si, P, S, Cl, Ti, Zr, and Mo but also the standard AM1 elements H, C, N, O and F. For comparison, the ZDO-approximated MEP was also calculated analytically in the spd-basis. For the AM1*-optimized structures, single-point calculations at the B3LYP, HF and MP2 levels with the 6-31G(d) and LanL2DZP basis sets were performed to obtain the MEP. The regression analysis of all 12 combinations of semiempirical and ab initio MEP data yielded correlation coefficients of at least 0.99 in all cases. Scaling the analytical and multipole-derived semiempirical MEP by the regression coefficients yielded mean unsigned errors below 2.6 and 1.9 kcal mol−1, respectively. Subsequently, for 22 drug molecules from the World Drug Index, atomic charges were computed according to the RESP procedure using XX/6-31G(d) (XX=B3LYP, HF, MP2) and scaled AM1* multipole MEP; the correlation coefficients obtained are 0.83, 0.85 and 0.83, respectively. Figure: Schematic representation of the atomic charge generation: The molecular electrostatic potential (MEP) is calculated using the AM1* Hamiltonian; then the semiempirical MEP is scaled to DFT or ab initio level, and atomic charges are generated subsequently by the restraint electrostatic potential (RESP) fit method. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorized users. Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.  相似文献   

6.
Full geometric optimization of endo,endo-tetracyclo[4.2.1.13,6.02,7]dodeca-4,9-diene (TTDD) has been carried out by ab initio and DFT/B3LYP methods and the structure of the molecule investigated. The double bonds of TTDD molecule are endo pyramidalized. The structure of π-orbitals and their mutual interactions for TTDD molecule were investigated. The cationic intermediates and products obtained as a result of the addition reaction have been studied using the HF/6-311G(d), HF/6-311G(d,p) and B3LYP/6-311G(d) methods. The bridged bromonium cation isomerized into the more stable N- and U-type cations and the difference between the stability of these cations is small. The N- and U-type reaction products are obtained as a result of the reaction, which takes place via the cations in question. The stability of exo, exo and exo, endo isomers of N-type product are nearly the same and the formation of both isomers is feasible. The U-type product basically formed from the exo, exo-isomer. Although the U-type cation was 0.68 kcal mol−1 more stable than the N-type cation, the U-type product was 4.79 kcal mol−1 less stable than the N-type product. Figure The energy diagram of TTDD–Br2 system (kcal mol−1)(MP2/6-311G*//HF/6-311G*)  相似文献   

7.
A series of [XN5] (X=O, S, Se, Te) compounds has been examined with ab initio and Density Functional Theory (DFT) methods. The five-membered nitrogen ring series of structures are global minima and may exist or be characterized due to their significant dissociation barriers (29.7–32.7 kcal mol−1). Nucleus-independent chemical shifts (NICS) criteria and the presence of (4n+2) π-electrons confirmed that the five-membered nitrogen ring in their structures exhibits characteristics of aromaticity. Thus, the strong stability of the five-membered nitrogen ring structures may be attributed partially to their aromaticity.   相似文献   

8.
The structures and stabilities of square–hexagon alternant boron nitrides (B x N x , x=12–36) vs their tube isomers containing octagons, decagons and dodecagons have been computed at the B3LYP density functional level of theory with the correlation-consistent cc-pVDZ basis set of Dunning. It is found that octagonal B20N20 and B24N24 tube structures are more stable than their square–hexagon alternants by 18.6 and 2.4 kcal mol−1, respectively, while the square–hexagon alternants of other cages are more stable. Trends in stability as a function of cluster size are discussed.Figure The octagonal B20N20 and B24N24 tube structures are more stable than their square-hexagon alternant cagesDedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

9.
Energy decomposition analyses based on the block-localized wave-function (BLW-ED) method are conducted to explore the nature of the hydrogen bonds in DNA base pairs in terms of deformation, Heitler–London, polarization, electron-transfer and dispersion-energy terms, where the Heitler–London energy term is composed of electrostatic and Pauli-exchange interactions. A modest electron-transfer effect is found in the Watson–Crick adenine–thymine (AT), guanine–cytosine (GC) and Hoogsteen adenine-thymine (H-AT) pairs, confirming the weak covalence in the hydrogen bonds. The electrostatic attraction and polarization effects account for most of the binding energies, particularly in the GC pair. Both theoretical and experimental data show that the GC pair has a binding energy (−25.4 kcal mol−1 at the MP2/6-31G** level) twice that of the AT (−12.4 kcal mol−1) and H-AT (−12.8 kcal mol−1) pairs, compared with three conventional N-H···O(N) hydrogen bonds in the GC pair and two in the AT or H-AT pair. Although the remarkably strong binding between the guanine and cytosine bases benefits from the opposite orientations of the dipole moments in these two bases assisted by the π-electron delocalization from the amine groups to the carbonyl groups, model calculations demonstrate that π-resonance has very limited influence on the covalence of the hydrogen bonds. Thus, the often adopted terminology “resonance-assisted hydrogen bonding (RHAB)” may be replaced with “resonance-assisted binding” which highlights the electrostatic rather than electron-transfer nature of the enhanced stabilization, as hydrogen bonds are usually regarded as weak covalent bonds. Figure Electron density difference (EDD) maps for the GC pair: a shows the polarization effect (isodensity 1.2×10−3 a.u.); b shows the charge transfer effect (isodensity 2×10−4 a.u.) Dedicated to Professor Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

10.
We have studied the influence of hydrogenation on the relative stability of the low-lying isomers of the anionic B7 cluster, computationally. It is known that the pure-boron B7 cluster has a doubly (σ- and π-) aromatic C6v (3A1) quasi-planar wheel-type triplet global minimum (structure 1), a low-lying σ-aromatic and π-antiaromatic quasi-planar singlet C2v (1A1) isomer 2 (0.7 kcal mol−1 above the global minimum), and a planar doubly (σ- and π-) antiaromatic C2v (1A1) isomer 3 (7.8 kcal mol−1 above the global minimum). However, upon hydrogenation, an inversion in the stability of the species occurs. The planar B7H2 (C2v, 1A1) isomer 4, originated from the addition of two hydrogen atoms to the doubly antiaromatic B7 isomer 3, becomes the global minimum structure. The second most stable B7H2 isomer 5, originated from the quasi-planar triplet wheel isomer 1 of B7, was found to be 27 kcal mol−1 higher in energy. The inversion in stability occurs due to the loss of the doubly aromatic character in the wheel-type global minimum isomer (C6v, 3A1) of B7 upon H2−addition. In contrast, the planar isomer of B7 (C2v, 1A1) gains aromatic character upon addition of two hydrogen atoms, which makes it more stable. Figure The B7H2-global minimum structure and its σ-aromatic and π-antiaromatic MOs Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday.  相似文献   

11.
General anesthetics apparently act through weak, noncovalent and reversible interactions with certain sites in appropriate brain proteins. As a means of gaining insight into the factors underlying anesthetic potency, we have analyzed the computed electrostatic potentials V S(r) on the surfaces of 20 molecules with activities that vary between zero and high. Our results are fully consistent with, and help to interpret, what has been observed experimentally. We find that an intermediate level of internal charge separation is required; this is measured by Π, the average absolute deviation of V S(r), and the approximate window is 7 < Π < 13 kcal mol−1. This fits in well with the fact that anesthetics need to be lipid soluble, but also to have some degree of hydrophilicity. We further show that polyhalogenated alkanes and ethers, which include the most powerful known anesthetics, have strong positive potentials, V S,max, associated with their hydrogens, chlorines and bromines (but not fluorines). These positive sites may impede the functioning of key brain proteins, for example by disrupting their normal hydrogen-bond patterns. It has indeed been recognized for some time that the most active polyhalogenated alkanes and ethers contain hydrogens usually in combination with chlorines and/or bromines. Figure The computed HF/6-31G* electrostatic potential, in kcal mol−1, on the 0.001 electrons/bohr3 surface of halothane, CF3CHBrCl. The color ranges are: red, more positive than 25; yellow, between 15 and 25; green between 0 and 15; blue, between −10 and 0. The strongly positive (red) potential is due to the hydrogen; the yellow and green positive regions at the right are on the bromine surface Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.  相似文献   

12.
The thiourea based receptor containing naphthalene groups (1), has been successfully designed and synthesized for application as an oxalate receptor. A density functional theory at B3LYP/6-31G(d,p) level of theory has been applied to predict the binding ability between 1 and selected anions, i.e., oxalate, malonate, succinate, glutarate, dihydrogen phosphate, and hydrogen sulphate. Calculation results point out that receptor 1 shows the strongest interaction to oxalate ion with the binding free energy of 172.48 kcal mol−1. The recognition ability of 1 to the selected anions has been also investigated by means of the absorption and emission techniques. Experimental results are in excellent agreement with the calculation data in which receptor 1 shows highly selective for oxalate ion over the other anions with logβ of 3.82 (0.02) M−1 by means of the size of binding cavity.   相似文献   

13.
The two possible routes to synthesize poly (lactic acid) are polycondensation of the lactic acid and ring opening polymerization (ROP) of the lactide. This work involves molecular modeling of the polymerization initiation mechanisms using different initiators a) H2SO4 for polycondensation b) aluminum isopropoxide for coordination-insertion ROP c)methyl triflate for cationic ROP, and d) potassium methoxide for anionic ROP. For molecular modeling of PLA, we have benchmarked our approach using Ryner’s work on ROP of L-lactide using stannous (II) 2-ethylhexanoate (Sn(Oct)2) and methanol as initiators. Our values of -15.2 kcal mol-1 and -14.1 kcal mol-1 for enthalpy changes in the two steps of activated complex formation match with Ryner’s. Geometric and frequency optimizations have been done on Gaussian’03 using B3LYP density functional theory along with the basis sets LANL2DZ for metal atoms and 6–31G* and 6–31G** for non metal atoms. The kinetic rate constant for each mechanism has been calculated using the values of energy of activation, change in enthalpy, Gibbs free energy, entropy and the partition functions from the Gaussian’03 output. Our polycondensation rate constant value of 1.07 × 10–4 se-1 compares well with 1.51 × 10–4 se-1 as reported by Wang. However, ROP rate constants could not be validated due to lack of experimental data. Figure Cationic Ring Opening Polymerization of L-Lactide
  相似文献   

14.
Following our recent study on triazane, we present a follow-up study on the thermodynamic properties of triazane’s unsaturated analog, triazene. We predict optimized structural parameters, vibrational frequencies, enthalpies of formation, enthalpies of combustion, specific enthalpies of combustion, and proton affinities. Our results indicate that the cis form of triazene has a specific enthalpy of combustion of −15.2 kJ g−1 and the trans form has a specific enthalpy of combustion of −14.7 kJ g−1. Figure Structures of cis- and trans-triazane, N3H3  相似文献   

15.
49Ti chemical shifts for a total of 20 titanium complexes are reported, and several levels of theory are evaluated in order to identify a reliable approach for the calculation of titanium NMR data. The popular B3LYP/6–31G(d)//B3LYP/6–31G(d) proves to give very good agreement with experimental data over a range from 1,400 to −1,300 ppm. The MP2/6–31G(d)//MP2/6–31G(d) level computes even smaller average deviations but fails for TiI4. This behavior together with its huge demand for computational resources requires careful handling of this theoretical level. In addition, NMR data for five titanium fulvene (or related) complexes are given. Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

16.
The applicability of the recently developed PM6 method for modeling various properties of a wide range of organic and inorganic crystalline solids has been investigated. Although the geometries of most systems examined were reproduced with good accuracy, severe errors were found in the predicted structures of a small number of solids. The origin of these errors was investigated, and a strategy for improving the method proposed. Figure Detail of Structure of Dihydrogen Phosphate in KH2PO4 (upper pair) and in (CH3)4NH2PO4. (Footnote): X-ray structures on left, PM6 structure on right. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
σ-Hole bonding is a noncovalent interaction between a region of positive electrostatic potential on the outer surface of a Group V, VI, or VII covalently-bonded atom (a σ-hole) and a region of negative potential on another molecule, e.g., a lone pair of a Lewis base. We have investigated computationally the occurrence of increased vibration frequencies (blue shifts) and bond shortening vs decreased frequencies (red shifts) and bond lengthening for the covalent bonds to the atoms having the σ-holes (the σ-hole donors). Both are possible, depending upon the properties of the donor and the acceptor. Our results are consistent with models that were developed earlier by Hermansson and by Qian and Krimm in relation to blue vs red shifting in hydrogen bond formation. These models invoke the derivatives of the permanent and the induced dipole moments of the donor molecule. Figure Computed electrostatic potential on the molecular surface of Cl-NO2. Color ranges, in kcal mol−1, are: red, greater than 25; yellow, between 10 and 25; green, between 0 and 10; blue, between −4 and 0; purple, more negative than −4. The chlorine is facing the viewer, to the right. Note the yellow region of positive potential on the outer side of the chlorine, along the extension of the N–Cl bond. The blue region shows the sides of the chlorine to have negative potentials. The calculations were at the B3PW91/6–31G(d,p) level.  相似文献   

18.
Covalently bonded atoms, at least in Groups V–VII, may have regions of both positive and negative electrostatic potentials on their surfaces. The positive regions tend to be along the extensions of the bonds to these atoms; the origin of this can be explained in terms of the σ-hole concept. It is thus possible for such an atom in one molecule to interact electrostatically with its counterpart in a second, identical molecule, forming a highly directional noncovalent bond. Several examples are presented and discussed. Such “like-like” interactions could not be understood in terms of atomic charges assigned by any of the usual procedures, which view a bonded atom as being entirely positive or negative. Figure Calculated electrostatic potential on the surface of SCl2. The sulfur is in the foreground, the chlorines are at the back. Color ranges (kcal mol−1): purple negative, blue between 0 and 8, green between 8 and 15, yellow between 15 and 20, red more positive than 20. Note that the sulfur has regions of both positive (red) and negative (purple) electrostatic potential  相似文献   

19.
The study of spin-spin coupling constants across hydrogen bond provides useful information about configuration of complexes. The interesting case of such interactions was observed as a coupling across an intramolecular hydrogen bond in 8-bromo-2′,3′-O-isopropylideneadenosine between the -CH2OH (at 5″ proton) group and the nitrogen atom of adenine. In this paper we report theoretical investigations on the 4h J NH coupling across the H″-C-O-H···N hydrogen bond in adenosine derivatives in various solvent models. Figure Coupling constants in 8-bromo-2′,3′-O-isopropylideneadenosine Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The linear interaction energy (LIE) approach has been applied to estimate the binding free energies of representative sets of HIV-1 RT and β-Secretase inhibitors, using both molecular dynamics (MD) and tethered energy minimization sampling protocols with the OPLS-AA potential, using a range of solvation methodologies. Generalized Born (GB), ‘shell’ and periodic boundary condition (PBC) solvation were used, the latter with reaction field (RF) electrostatics. Poisson-Boltzmann (PB) and GB continuum electrostatics schemes were applied to the simulation trajectories for each solvation type to estimate the electrostatic ligand-water interaction energy in both the free and bound states. Reasonable agreement of the LIE predictions was obtained with respect to experimental binding free energy estimates for both systems: for instance, ‘PB’ fits on MD trajectories carried out with PBC solvation and RF electrostatics led to models with standard errors of 1.11 and 1.03 kcal mol−1 and coefficients of determination, r 2 of 0.76 and 0.75 for the HIV-1 RT and β-Secretase sets. However, it was also found that results from MD sampling using PBC solvation provided only slightly better fits than from simulations using shell or Born solvation or tethered energy minimization sampling. Figure Evolution of the running averages for compound H11 (binding to HIV-1RT) of the bound state ligand-water and ligand-protein interaction energies. The ligand-water electrostatic terms are twice the corresponding GB and PB electrostatic solvation free energies. The ligand-receptor van der Waals and Coulombic interaction energies are also shown, in addition to the ligand-water van der Waals interaction term. The terms were calculated (without application of a cut-off) from a trajectory sampled under PBC solvation with reaction field electrostatics Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号