首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Over the past 20 years, DNA-based biotechnologies have been applied to agricultural production and many crops with new and useful attributes have been cultivated in various countries. The adoption of this new technology by farmers has been swift, and benefits in terms of increased production per unit land and environmental benefits are becoming obvious. In forestry, the application of biotechnology is somewhat lagging behind and to date there are no commercial plantations with genetically modified trees. However, most tree species used in plantation forestry have been genetically transformed, and results demonstrate the successful and correct expression of new genes in these plants. At the same time, this new technology is being viewed with concern, very similar to the concerns voiced over the use of genetic engineering in agriculture. This paper discusses some of the issues involved for world forestry, with particular focus on future demand for timber and timber products and how modern biotechnology can contribute to meet the growing demand. Tree genetic engineering techniques will be outlined, and results reviewed for a number of species. Concerns over the use of this new technology will be described and analyzed in relation to scientific considerations.  相似文献   

2.
Knowledge of the origin and domestication history of crop plants is important for studies aiming at avoiding the erosion of genetic resources due to the loss of ecotypes and landraces and habitats and increased urbanization. Such knowledge also strengthens the capacity of modern farming system to develop and scale-up the domestication of high value potential crops that can be achieved by improving the knowledge that help to identify and select high value plant species within their locality, identify and apply the most appropriate propagation techniques for improving crops and integrate improved crop species into the farming systems. The study of domestication history and ancestry provide means for germplasm preservation through establishment of gene banks, largely as seed collections, and preservation of natural habitats. Information about crop evolution and specifically on patterns of genetic change generated by evolution prior, during, and after domestication, is important to develop sound genetic conservation programs of genetic resources of crop plants and also increases the efficiency of breeding programs. In recent years, molecular approaches have contributed to our understanding of the aspects of plant evolution and crops domestication. In this article, aspects of crops domestication are outlined and the role of molecular data in elucidating the ancestry and domestication of crop plants are outlined. Particular emphasis is given to the contribution of molecular approaches to the origin and domestication history of barley and the origin and ancestry of the Egyptian clover.  相似文献   

3.
Forests are sources of wood, non‐timber forest products and ecosystems services and goods that benefit society as a whole, and are especially important to rural livelihoods. Forest landscape restoration (FLR) has been proposed as a way to counteract deforestation and reconcile the production of ecosystem services and goods with conservation and development goals. But limited evidence indicates how large‐scale forest restoration could contribute to improving local livelihoods. Here, we present a conceptual framework to analyze the effects of large‐scale restoration on local livelihoods, and use it to review the scientific literature and reduce this knowledge gap. Most of the literature referred to case studies (89%), largely concentrated in China (49%). The main theme explored was income, followed by livelihoods diversification, off‐farm employment opportunities, poverty reduction, equity and the provision of timber and energy as ecosystem services. Nearly 60 percent of the papers discussed the importance of governance systems to socioeconomic outcomes. The reforestation/restoration programs and policies investigated in the studies had mixed socioeconomic effects on local livelihoods depending on other variables, such as availability of off‐farm jobs, household characteristics, land productivity, land tenure, and markets for forest products and ecosystem services. We conclude that the effects of large‐scale restoration initiatives on local livelihoods may vary due to several factors and is still not clear for many situations; therefore, monitoring over time with clear indicators is needed.  相似文献   

4.
1. Terrestrial dispersal by aquatic insects increases population connectivity in some stream species by allowing individuals to move outside the structure of the stream network. In addition, individual survival and reproductive success (as well as dispersal) are tightly linked to the quality of the terrestrial habitat. 2. In historically forested catchments, deforestation and altered land use have the potential to interfere with mayfly dispersal or mating behaviours by degrading the quality of the terrestrial matrix among headwater streams. We hypothesised that loss of tree cover in first‐order catchments would be associated with an increase in population substructure and a decrease in genetic diversity of mayfly populations. 3. To test this hypothesis, we investigated spatial patterns of genetic variation in the common mayfly Ephemerella invaria across a gradient of deforestation in the central piedmont region of eastern United States. Intraspecific genetic diversity and population substructure were estimated from data obtained using fluorescent amplified fragment length polymorphism (AFLP) markers. 4. We found that mayfly populations had low population substructure within headwater stream networks and that genetic diversity was strongly negatively correlated with mean deforestation of the first‐order catchments. The large‐scale pattern of population substructure followed a pattern of isolation by distance (IBD) in which genetic differentiation increases with geographical distance, but assignment tests placed a few individuals into populations 300 km away from the collection site. 5. Our results show that loss of genetic diversity in this widespread aquatic insect species is co‐occurring with deforestation of headwater streams. 6. Most arguments supporting protection of headwater streams in the United States have centred on the role of these streams as hydrological and biogeochemical conduits to downstream waters. Our work suggests that headwater stream land use, and specifically tree cover, may have a role in the maintenance of regional genetic diversity in some common aquatic insect species.  相似文献   

5.
The horse has been a food source, but more importantly, it has been a means for transport. Its domestication was one of the crucial steps in the history of human civilization. Despite the archaeological and molecular studies carried out on the history of horse domestication, which would contribute to conservation of the breeds, the details of the domestication of horses still remain to be resolved. We employed 21 microsatellite loci and mitochondrial control region partial sequences to analyse genetic variability within and among four Anatolian native horse breeds, Ayvac?k Pony, Malakan Horse, H?n?s Horse and Canik Horse, as well as samples from indigenous horses of unknown breed ancestry. The aims of the study were twofold: first, to produce data from the prehistorically and historically important land bridge, Anatolia, in order to assess its role in horse domestication and second, to analyse the data from a conservation perspective to help the ministry improve conservation and management strategies regarding native horse breeds. Even though the microsatellite data revealed a high allelic diversity, 98% of the genetic variation partitioned within groups. Genetic structure did not correlate with a breed or geographic origin. High diversity was also detected in mtDNA control region sequence analysis. Frequencies of two haplogroups (HC and HF) revealed a cline between Asia and Europe, suggesting Anatolia as a probable connection route between the two continents. This first detailed genetic study on Anatolian horse breeds revealed high diversity among horse mtDNA haplogroups in Anatolia and suggested Anatolia’s role as a conduit between the two continents. The study also provides an important basis for conservation practices in Turkey.  相似文献   

6.
This article analyzes agroforestry practices among the Ndia and Gichugu Kikuyu of Kirinyaga, Kenya, at the turn of the century, before the onset of colonial rule. It describes ways in which people adapted to competing pressures for retaining and removing tree cover. It shows how religious beliefs, tenure relations based on a communal property-rights regime, and farm forestry practices contributed to the conservation of trees. Such strategies were not aimed at reversing deforestation, but mitigating its impact by incorporating valued trees into local sociocultural and household production systems. The article points out that indigenous agroforestry practices need to be viewed in the context of local socioeconomic and ecological differences. It also considers the impact of the caravan trade on land use during the late 1800s. Tree scarcity in the late precolonial era is briefly contrasted with the area's woodfuel crisis of the 1980s.  相似文献   

7.
An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range‐wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R‐statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ~60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat‐matched sites within a 30‐km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability‐based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration.  相似文献   

8.
Genetic variation was assessed in the two bush mango species, Irvingia gabonensis and I. wombolu, valuable multipurpose fruit trees from central and west Africa that are currently undergoing domestication. A total of 130 individuals sampled from Cameroon, Nigeria and Gabon were analysed using 74 random amplified polymorphic DNAs (RAPDs). Significant genetic integrity was found in the two morphologically similar species (among-species analysis of molecular variance [AMOVA] variance component 25.8%, P < 0.001), with no evidence of hybridization, even between individuals from areas of sympatry where hybridization was considered probable. Results suggest that large-scale transplantation of either species into new habitats will probably not lead to genetic introgression from or into the other species. Therefore, subsequent cultivation of the two species should not be hindered by this consideration, although further studies on the potential for hybridization/introgression between these species would be prudent. Significant genetic differentiation of both species (among-countries within species, nested AMOVA variance component 9.8%, P < 0.001) was observed over the sampled regions, and genetic similarity of samples decreased significantly with increasing geographical distance, according to number of alleles in common (NAC) analysis. 'Hot spots' of genetic diversity were found clustered in southern Nigeria and southern Cameroon for I. wombolu, and in southern Nigeria, southern Cameroon and central Gabon for I. gabonensis. The possible reasons for this distribution of genetic variation are discussed, but it may reflect evolutionary history, as these populations occur in areas of postulated Pleistocene refugia. The application of these results to domestication programmes and, in the light of extensive deforestation in the region, conservation approaches, is discussed.  相似文献   

9.
10.
The Great Lakes region of Central Africa is a major producer of common beans in Africa. The region is known for high population density and small average farm size. The common bean represents the most important legume crop of the region, grown on over a third of the cultivated land area, and the per capita consumption is among the highest in the world for the food crop. The objective of this study was to evaluate the genetic diversity in a collection of 365 genotypes from the Great Lakes region of Central Africa, including a large group of landraces from Rwanda as well as varieties from primary centers of diversity and from neighboring countries of Central Africa, such as the Democratic Republic of Congo and Uganda, using 30 fluorescently labeled microsatellite markers and automated allele detection. In addition, the landraces were evaluated for their seed iron and zinc concentration to determine if genetic diversity influenced nutritional quality. Principal coordinate and neighbor-joining analyses allowed the separation of the landraces into 132 Andean and 195 Mesoamerican (or Middle American) genotypes with 32 landraces and 6 varieties intermediate between the gene pools and representing inter-gene pool introgression in terms of seed characteristics and alleles. Genetic diversity and the number of alleles were high for the collection, reflecting the preference for a wide range of seed types in the region and no strong commercial class preference, although red, red mottled and brown seeded beans were common. Observed heterozygosity was also high and may be explained by the common practice of maintaining seed and plant mixtures, a coping strategy practiced by Central African farmers to reduce the effects of abiotic and biotic stresses. Finally, nutritional quality differed between the gene pools with respect to seed iron and zinc concentration, while genotypes from the intermediate group were notably high in both minerals. In conclusion, this study has shown that Central African varieties of common bean are a source of wide genetic diversity with variable nutritional quality that can be used in crop improvement programs for the region.  相似文献   

11.
Forest biotechnology: Innovative methods, emerging opportunities   总被引:1,自引:0,他引:1  
Summary The productivity of plantation forests is essential to meet the future world demand for wood and wood products in a sustainable fashion and in a manner that preserves natural stands and biodiversity. Plantation forestry has enormously benefited from development and implementation of improved silvicultural and forest management practices during the past century. A second wave of improvements has been brought about by the introduction of new germplasm developed through genetics and breeding efforts for both hardwood and conifer tree species. Coupled with the genetic gains achieved through tree breeding, the emergence of new biotechnological approaches that span the fields of plant developmental biology, genetic transformation, and discovery of genes associated with complex multigenic traits have added a new dimension to forest tree improvement programs. Significant progress has been made during the past five years in the area of plant regeneration via organogenesis and somatic embryogenesis (SE) for economically important tree species. These advances have not only helped the development of efficient gene transfer techniques, but also have opened up avenues for deployment of new high-performance clonally replicated planting stocks in forest plantations. One of the greatest challenges today is the ability to extend this technology to the most elite germplasm, such that it becomes an, economically feasible means for large-scale production and delivery of improved planting stock. Another challenge will be the ability of the forestry research community to capitalize rapidly on current and future genomics-based elucidation of the underlying mechanisms for important but complex phenotypes. Advancements in gene cloning and genomics technology in forest trees have enabled the discovery and introduction of value-added traits for wood quality and resistance to biotic and abiotic stresses into improved genotypes. With these technical advancements, it will be necessary for reliable regulatory infrastructures and processes to be in place worldwide for testing and release of trees improved through biotechnology. Commercialization of planting stocks, as new varieties generated through clonal propagation and advanced breeding programs or as transgenic trees with high-value traits, is expected in the near future, and these trees will enhance the quality and productivity of our plantation forests.  相似文献   

12.
Land application of municipal biosolids on coal mine spoils can benefit vegetation establishment in mine reclamation. However, the application of biosolids leads to domination by early‐successional species, such as grasses, and low establishment of woody and volunteer species, thus reducing potential for forestry as a postmining land use. In this experiment, tree seedlings were planted in strips (0.6‐, 1‐, and 4‐m wide) that were not seeded with grasses, and the effects of unseeded strip width on seedling growth and species richness were assessed. Planted seedling mortality was high; therefore, the effect of unseeded strip width on seedling growth could not be determined. However, it was found that natural plant invasion and species richness were highest in the 4‐m unseeded strips. The practice of leaving 4‐m‐wide unseeded strips in mine reclamation with biosolids in the eastern United States, along with the improvement of tree seedling planting practices and planting stock, would help promote a more species‐rich plant community that could be utilized for forestry or a variety of other postmining land uses.  相似文献   

13.
中国经过遗传改良的重要造林树种有100多种,全国年均提供各类林木种子2300万kg,年均生产各类良种壮苗约130亿株。林木良种在生产上的应用产生了明显的综合增益,其中用材林平均生长增益达10%~30%,经济林平均产量增益达15%~68%。中国每年进口林木种子15万kg以上,涉及50多个树种;每年出口林木种子30万kg和苗木400多种。近10年来,中国林木遗传资源的可持续经营和利用已取得了明显的进步,但与一些发达国家相比还存在一定差距。今后,应优先考虑对已保存的林木遗传资源的维护和资金补贴,加强种苗市场监管和信息服务,进一步提高林木良种的基地供种率和良种使用率。  相似文献   

14.
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost‐competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case‐by‐case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land‐use decisions are made and how new social, political and economic forces in the future will influence this process.  相似文献   

15.
林木种子及苗木鉴别技术的准确性和可靠性是提高营林造林质量的关键环节。传统的种苗鉴别技术的局限性往往使之不能有效鉴别林木种子的品种及种源。DNA遗传标记技术则能提供稳定、准确、可靠的种及品种特异性标记,因而成为林业生产上极具潜力的品种鉴定手段。本文综述了目前国际上DNA遗传标记技术的研究进展,并讨论了开展我国林木种苗DNA鉴定技术研究的若干设想。  相似文献   

16.
Accelerating the domestication of forest trees in a changing world   总被引:2,自引:0,他引:2  
In light of impending water and arable land shortages, population growth and climate change, it is more important than ever to examine how forest tree domestication can be accelerated to sustainably meet future demands for wood, biomass, paper, fuel and biomaterials. Because of long breeding cycles, tree domestication cannot be rapidly achieved through traditional genetic improvement methods alone. Integrating modern genetic and genomic techniques with conventional breeding will expedite tree domestication. Breeders will only embrace these technologies if they are cost-effective and readily accessible, and forest landowners will only adopt end-products that meet with regulatory approval and public acceptance. All parties involved must work together to achieve these objectives for the benefit of society.  相似文献   

17.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

18.
Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N.?nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs.  相似文献   

19.
Microsatellite markers were used to obtain direct and indirect estimates of gene flow in populations of Polaskia chichipe under different management regimes, in order to understand the genetic consequences of gene flow in the evolutionary process of domestication. P. chichipe is a columnar cactus endemic to the Tehuacan Valley, Central Mexico, and has come under domestication for its edible fruit. Morphological, phenological, physiological, and reproductive differences, apparently attributable to artificial selection, exist between wild and managed populations, which grow sympatrically. However, strong gene flow may counteract the effects of this selection. In this study, we used paternity analysis to demonstrate that although most of the pollinations occur among individuals within the same population at distances < 40 m, pollen flow from other populations is considerable (27 +/- 5%). Heterogeneity in pollen clouds sampled by mother plants (FST = 0.12) indicated nonrandom mating, which is probably due to temporal heterogeneity in pollen movement. Spatial structure on local and regional scales is consistent with an isolation-by-distance model. The similarity of indirect, direct and demographic estimates of neighbourhood size (74-250 individuals) suggests that this genetic structure is representative of an equilibrium state. These results suggest that traditional management practices have conserved the genetic resources of this species in situ, but also that gene flow is counteracting the effect of domestication to some degree. We discuss our results in the general context of genetic exchange between cultivated and wild populations during the domestication process.  相似文献   

20.
Eucalyptus nitens is an important forestry species grown for pulp and paper production in the temperate, summer-rainfall regions of South Africa. A tree improvement programme has been ongoing at the Institute for Commercial Forestry Research for two decades, but genetic improvement in the species has been slow due to delayed and infrequent flowering and seed production. Three trials were established, firstly, to quantify the gains that have been made in the first generation of improvement in the breeding programme and, secondly, to establish whether a number of seed source and orchard variables influence the performance of the progeny. These variables were the amount of flowering trees in the seed orchard, year of seed collection, seed orchard origin and composition of seed orchard bulks. Diameter at breast height and tree heights were measured in the trials at between 87 and 97 months after establishment, and timber volumes and survival were calculated. Improved seed orchard bulks performed significantly better (p?<?0.01) than unimproved controls in the field trials. Genetic gains ranging from 23.2 to 164.8 m3?ha?1 were observed over the unimproved commercial seed. There were significant differences (p?<?0.01) in progeny growth between the levels of seed orchard flowering, with higher levels of flowering (≥40 %) producing substantially greater progeny growth than lower flowering levels (≤20 %). The seed orchard had no effect on progeny growth in this trial series. This suggests that seed collected from any of the four seed orchards tested will produce trees with significant improvement in growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号