首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
Glycerate kinase (EC 2.7.1.31) from maize (Zea mays) leaves was shown to be regulated by light/dark transition. The enzyme more than doubled in activity after either the leaves or isolated mesophyll chloroplasts were illuminated with white light for 10 minutes. Rate of inactivation in the dark was faster in leaves than in the isolated chloroplast fraction. The stimulating effect of light could be mimicked in crude preparations by addition of 10 or 50 millimolar dithiothreitol or 100 millimolar 2-mercaptoethanol. The thiol treatment resulted in 8- to 10-fold activation of glycerate kinase, with the highest rates in the range of 27 to 30 micromoles per mg chlorophyll per hour. Activation was not accompanied by any changes in the apparent Mr value of glycerate kinase as determined by gel filtration (Mr = 47,000). In contrast to maize glycerate kinase, the enzyme from spinach was not affected by either light or thiol exposure.

Partially purified maize glycerate kinase was activated up to 3-fold upon incubation with a mixture of spinach thioredoxins m and f and 5 millimolar dithiothreitol. The thioredoxin and dithiothreitol-treated glycerate kinase could be further stimulated by addition of 2.5 millimolar ATP. The results suggest that glycerate kinase from maize leaves is capable of photoactivation by the ferredoxin/thioredoxin system. The synergistic effect of ATP and thioredoxins in activation of the enzyme supports the earlier expressed view that the ferredoxin/thioredoxin system functions jointly with effector metabolites in light-mediated regulation during photosynthesis.

  相似文献   

2.
A Zea mays callus culture containing chlorophyll was established and grown photomixotrophically. Cell chloroplast structure, and pigment and soluble protein contents were examined. Expression of some key enzymes of C4 carbon metabolism was compared with that of etiolated (heterotrophic) and green photoautotrophic leaves. Chlorophyll content of the callus was 15–20% that of green leaves. Soluble protein content of callus was half that of leaf cells. Electron microscopic observations showed that green callus cells contained only typical granal chloroplasts. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.38) activities in green callus were ca 30% those of green leaves but 2–3 times higher than in etiolated leaves. Quantitative enzyme protein determination, using antibodies specific to maize leaf Rubisco showed that the chloroplastic carboxylase represented about 7% of total soluble protein in green callus, in parallel to its low chlorophyll content. The specific activity of Rubisco in callus and leaves was unchanged. Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity in green callus was about 20% that of green leaves and similar to that measured in etiolated leaves. Apparent Km (PEP) values (0.08 mM) for PEPC isolated from green callus and etiolated leaves were very different from values (0.5 mM) obtained with PEPC from green leaves. These kinetic characteristics together with the absence of inhibition by malate and activation by glucose-6-phosphate suggest that the properties of PEPC isolated from green callus and etiolated maize leaves are very similar to those of PEPPC from C3 plants. Using PEPC antibodies specific to green maize leaf enzyme, immunotitration of PEPC preparations containing identical enzyme units allowed complete precipitation of the green leaf enzyme with increasing antibody volumes. In contrast, 60–70% of the activity of PEPC from etiolated and green callus was inhibited, suggesting low affinity for the maize green leaf PEPC antiserum (typical C4 form). Ouchterlony double diffusion tests revealed only partial recognition of PEPC in green callus and etiolated leaves. NAD-malate dehydrogenase (NAD-MDH, EC 1.1.1.37) activity in callus was 2 and 3 times higher, respectively, than in etiolated and green leaves. NADP-malic enzyme (NADP-ME, EC 1.1.1.40) activity in callus cultures was much lower than in green leaves. All our data support the hypothesis that cultures of fully dedifferentiated chlorophyllous tissues of Zea mays possess a C3-like metabolism.  相似文献   

3.
NADP-malate dehydrogenase extracted from darkened leaves of the C3 plants pea, barley, wheat and spinach was activated by reduced glutathione, a monothiol, as well as by dithiothreitol (DTT). However, in the C4 plants maize and Flaveria trinervia, only dithiothreitol could effectively activate the enzyme. There was no activation of the maize enzyme and little or no activation of the F. trinervia enzyme by glutathione. The failure of glutathione to activate NADP-MDH in leaf extracts of maize and F. trinervia may indicate there is some difference in disulfide groups of the protein compared to the C3 plant enzyme. Both DTT and glutathione could activate NADP-malate dehydrogenase in a partially purified enzyme preparation from pea leaves with or without addition of partially purified thioredoxin. However, the required concentration of reductant was lower with addition of thioredoxin than in its absence. In extracts of C3 species and the partially purified pea enzyme the level of activation after 40 to 60 min under aerobic conditions was higher (up to twofold) with DTT than with glutathione. Under anaerobic conditions, the initial rate of activation was about twice as high with DTT as with glutathione, but the total activation after 40 to 60 min was similar. Ascorbate was totally ineffective as a reducing agent in activating NADP-MDH from C3 or C4 plants, possibly due to its more positive redox potential.Abbreviations Chl Chlorophyll - DTT Dithiothreitol - GSH Reduced Glutathione - NADP-MDH NADP-malate Dehydrogenase  相似文献   

4.
Kleczkowski, L. A. and Randall, D. D. 1987. Immunologicallydistinct forms of adenylate kinase in leaves: comparison ofsubunit size of adenylate kinase from C3 and C4 plants.—J.exp. Bot. 38: 1440–1445. Antibodies prepared against maize leaf adenylate kinase (E.C.2.7.4.3 [EC] ) cross-reacted with the enzyme isolated from leavesof both C3 and C4 plants. The immunoreaction was very specificas judged by the presence of a single band on Western immunoblotscontaining proteins from leaf extracts of several species. Themolecular weight (M1) of adenylate kinase determined by meansof the immunoblotting was 29 kD and 27 kD for C4 and C3 species,respectively. For both C3 and C4 plants, the antibodies failedto precipitate all adenylate kinase activity in leaf extracts,while they were 100% effective in pelleting the enzyme frommaize mesophyll chloroplasts. This indicated the presence ofat least two immunologically distinct forms of adenylate kinasein leaves. It is suggested that the observed differences in molecular structure(M1s) of adenylate kinase from C3 and C4 species might be responsiblefor distinct catalytic and functional properties of the enzymein these two groups of plants. The irrununologically-determinedoccurrence of distinct pools of adenylate kinase in leaves supportsprevious evidence obtained by means of subcellular fractionationstudies.  相似文献   

5.
Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at 59°C and pH 2. Along with another thermoacidophilic archaeon,Sulfolobus solfataricus, it is known to metabolize glucose by the non-phosphorylated Entner-Doudoroff (nED) pathway. In the course of these studies, the specific activities of glyceraldehyde dehydrogenase and glycerate kinase, two enzymes that are involved in the downstream part of the nED pathway, were found to be much higher inT. acidophilum than inS. solfataricus. To characterize glycerate kinase, the enzyme was purified to homogeneity fromT. acidophilum cell extracts. TheN-terminal sequence of the purified enzyme was in exact agreement with that of Ta0453m in the genome database, with the removal of the initiator methionine. Furthermore, the enzyme was a monomer with a molecular weight of 49 kDa and followed Michaelis-Menten kinetics withK m values of 0.56 and 0.32 mM forDL-glycerate and ATP, respectively. The enzyme also exhibited excellent thermal stability at 70°C. Of the seven sugars and four phosphate donors tested, onlyDL-glycerate and ATP were utilized by glycerate kinase as substrates. In addition, a coupled enzyme assay indicated that 2-phosphoglycerate was produced as a product. When divalent metal ions, such as Mn2+, Co2+, Ni2+, Zn2+, Ca2+, and Sr2+, were substituted for Mg2+, the enzyme activities were less than 10% of that obtained in the presence of Mg2+. The amino acid sequence ofT. acidophilum glycerate kinase showed no similarity withE. coli glycerate kinases, which belong to the first glycerate kinase family. This is the first report on the biochemical characterization of an enzyme which belongs to a member of the second glycerate kinase family.  相似文献   

6.
The net carbon incorporation in maize (Zea mays) and tomato (Lycopersicum esculentum) leaves was mainly the result of the carboxylation of ribulose 1,5-diphosphate. In both of these organisms synthesis of glycerate 3-phosphate was studied during short chase experiments (2 or 3 seconds in 14CO2 then 8 to 27 seconds in unlabeled CO2). Changes in the radioactivity in the individual carbon atoms of glycerate 3-phosphate, malate, and aspartate are consistent with the formation, in both leaves, of 2 molecules of glycerate 3-phosphate for each CO2 molecule incorporated. The CO2, before reacting with ribulose 1,5-diphosphate, is first incorporated in an intracellular CO2 pool which has a different composition according to the species. This pool is constituted in tomato by volatile compounds (50 nanomoles per gram of fresh weight) more or less in equilibrium with atmospheric CO2. In maize the pool consists of carbon atoms 4 of malate and aspartate (for at least 80% of the pool) and volatile compounds which correspond, in all, to 540 nanomoles per gram of fresh weight where atmospheric CO2 enters through an irreversible reaction.  相似文献   

7.
Glycerate kinase (GK; EC 2.7.1.31) from maize (Zea mays L.) leaves was purified by a sequence of ammonium-sulfate precipitations and chromatography on diethylaminoethyl-cellulose, hydroxyapatite, Sephadex G-75SF and dye ligand (Green A) columns. The purest preparation was almost 1300-fold enriched and had a specific activity of 68 mol · min-1 · (mg protein) -1. The enzyme was a monomer of a relative molecular mass (Mr) of 44 kDa (kdalton) as determined by gel filtration, electrophoresis in dissociating conditions and by immunoblots. The enzyme was only weakly recognized by polyclonal antibodies against purified spinach GK, indicating substantial differences in molecular structure of the two proteins. Highly reducing conditions stabilized GK activity and were required for activation of crude leaf enzyme. The enzyme had a broad pH optimum of 6.8–8.5, and formed 3-phosphoglycerate and ADP as reaction products. Apparent K ms for D-glycerate and Mg-ATP were 0.11 and 0.25 mM, respectively. The enzyme was strongly affected by a number of phosphoesters, especially by 3-phosphoglycerate (K i= 0.36 mM), fructose bisphosphates and nucleoside bisphosphates. Inhibition by 3-phosphoglycerate was competitive to Mg-ATP and noncompetitive to D-glycerate. Pyruvate was found noncompetitive to D-glycerate (K is=4 mM). The ratio of stromal concentration of Mg-ATP to phosphoesters, particularly to 3-phosphoglycerate, may be of importance in the regulation of GK during C4-photosynthesis.Abbreviations DEAE diethylaminoethyl - kDa kdalton - GAP-DH glyceraldehyde phosphate dehydrogenase - GK glycerate kinase - LDH lactate dehydrogenase - 2-ME 2-mercaptoethanol - Mr relative molecular mass - PEP phosphoenolpyruvate - PGA(PK) phosphoglycerate (phosphokinase) - PK pyruvate kinase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   

8.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

9.
Kimata Y  Hase T 《Plant physiology》1989,89(4):1193-1197
Four ferredoxin isoproteins were identified in the C4 plant Zea mays L. by analysis of extracts from leaves, mesocotyls, and roots of the young seedlings. The relative amounts of the isoproteins isolated from the photosynthetic and nonphotosynthetic organs were different. All the isoproteins were present in the leaves of green and etiolated plants, whereas two out of the four isoproteins were not detected in the roots or in the mesocotyls. During the greening of etiolated seedlings, the level of the two isoproteins unique to the leaf increased markedly. Analysis of the cellular and subcellular distribution of the two major leaf isoproteins showed that one isoprotein was present in the chloroplasts of both mesophyll and bundle sheath cells, whereas the other was only found in the chloroplasts of bundle sheath cells. This is the first report of the cell-specific expression of ferredoxin isoproteins in the leaves of a C4 plant.  相似文献   

10.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

11.
The distribution of the glycolytic enzymes, phosphofructokinase, aldolase, triosephosphate isomerase, phosphoglycerate kinase, pyruvate kinase, and the oxidative pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, was determined in the leaf tissues of two C3-plants, pea and leek, and two C4-plants, maize and sorghum. All enzymes examined were found in epidermal tissue. In pea, maize, and sorghum leaves, the specific activities of these enzymes were usually higher in the nonphotosynthetic epidermal tissue than in the photosynthetic tissues of the leaves. In leek leaves, which were etiolated, specific activities were similar in both epidermal and mesophyll tissue. The distribution of the rate limiting enzymes of glycolysis and the oxidative pentose phosphate pathways probably reflects the capacity of each tissue to generate NADH, NADPH, and ATP from the oxidation of glucose. This capacity appears to be greater in leaf tissues unable to generate reducing equivalents and ATP by photosynthesis, that is, in epidermal tissues and etiolated mesophyll tissue.  相似文献   

12.
The intercellular distribution of assimilatory sulfate reduction enzymes between mesophyll and bundle sheath cells was analyzed in maize (Zea mays L.) and wheat (Triticum aestivum L.) leaves. In maize, a C4 plant, 96 to 100% of adenosine 5′-phosphosulfate sulfotransferase and 92 to 100% of ATP sulfurylase activity (EC 2.7.7.4) was detected in the bundle sheath cells. Sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8) were found in both bundle sheath and mesophyll cell types. In wheat, a C3 species, ATP sulfurylase and adenosine 5′-phosphosulfate sulfotransferase were found at equivalent activities in both mesophyll and bundle sheath cells. Leaves of etiolated maize plants contained appreciable ATP sulfurylase activity but only trace adenosine 5′-phosphosulfate sulfotransferase activity. Both enzyme activities increased in the bundle sheath cells during greening but remained at negligible levels in mesophyll cells. In leaves of maize grown without addition of a sulfur source for 12 d, the specific activity of adenosine 5′-phosphosulfate sulfotransferase and ATP sulfurylase in the bundle sheath cells was higher than in the controls. In the mesophyll cells, however, both enzyme activities remained undetectable. The intercellular distribution of enzymes would indicate that the first two steps of sulfur assimilation are restricted to the bundle sheath cells of C4 plants, and this restriction is independent of ontogeny and the sulfur nutritional status of the plants.  相似文献   

13.
Vu JC  Allen LH  Bowes G 《Plant physiology》1984,76(3):843-845
Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO3 and Mg2+ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C3); P. maximum (C4 phosphoenolpyruvate carboxykinase); P. milioides (C3/C4); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C3); P. miliaceum (C4 NAD malic enzyme); Zea mays and Sorghum bicolor (C4 NADP malic enzyme); Moricandia arvensis (C3/C4); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C3 species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO2 and Mg2+ activation, but which can be converted to an activatable state upon exposure of the leaf to light.  相似文献   

14.
A glycerate kinase gene (ST2037) from the hyperthermophilic crenarchaeon Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The purified homodimeric protein (45 kDa) specifically catalyzed the formation of 2-phosphoglycerate with d-glycerate as substrate. The thermostable enzyme displayed maximum activity (over 20 min) at 90°C and pH 4.5. The maximal activity was in the presence of Co2+. The MOFRL family glycerate kinase used AMP as phosphate donor with maximal activity towards GTP. These characteristics of the enzyme suggested its potential in the catalytic production of 2-phosphoglycerate.  相似文献   

15.
Usuda H  Edwards GE 《Plant physiology》1980,65(5):1017-1022
The localization of some key enzymes leading to sucrose synthesis in photosynthetic tissue of C3 and C4 species was investigated. These included UDP-glucose (UDPG) pyrophosphorylase, sucrose phosphate synthetase, and glycerate kinase. Whether glycerate kinase is localized exclusively in the chloroplast or partly outside the chloroplast could influence the fate of carbon flow to sucrose through the glycolate pathway.  相似文献   

16.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

17.
3-Phosphoglycerate phosphatase and phosphoglycolate phosphatase were found in leaves of all 52 plants examined. Activities of both phosphatases varied widely between 1 to 20 micromoles per minute per milligram chlorophyll. Plants were grouped into two categories based upon the relative ratio of activity of 3-phosphoglycerate phosphatase to phosphoglycolate phosphatase. This ratio varied between 2:1 to 4:1 in the C4-plants except corn leaves which had a low level of 3-phosphoglycerate phosphatase. This ratio was reversed and varied between 1:2 to 1:6 in all C3-plants except one bean variety which had large amounts of both phosphatases. By differential grinding procedures for C4 plants a major part of the 3-phosphoglycerate phosphatase was found in the mesophyll cells and P-glycolate phosphatase in the bundle sheath cells. Phosphoglycolate phosphatase, but not 3-phosphoglycerate phosphatase, was located in chloroplasts of C3- and C4- plants. Formation of 3-phosphoglycerate phosphatase increased 4- to 12-fold during greening of etiolated sugarcane leaves. This cytosol phosphatase displayed a diurnal variation in sugarcane leaves by increasing 50% during late daylight hours and early evening. It is proposed that the soluble form of 3-phosphoglycerate phosphatase is necessary for carbon transport between the bundle sheath and mesophyll cells during photosynthesis by C4-plants. In C3- and C4-plants this phosphatase initiates the conversion of 3-phosphoglycerate to serine which is an alternate metabolic pathway to glycolate metabolism and photorespiration.  相似文献   

18.
Sunflower (Helianthus annuus L. cv Asmer) and maize (Zea mays L. cv Eta) plants were grown under controlled environmental conditions with a nutrient solution containing 0, 0.5, or 10 millimolar inorganic phosphate. Phosphate-deficient leaves had lower photosynthetic rates at ambient and saturating CO2 and much smaller carboxylation efficiencies than those of plants grown with ample phosphate. In addition, phosphate-deficient leaves contained smaller quantities of total soluble proteins and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit area, although the relative proportions of these components remained unchanged. The specific activity of Rubisco (estimated in the crude extracts of leaves) was significantly reduced by phosphate deficiency in sunflower but not in maize. Thus, there was a strong dependence of carboxylation efficiency and CO2-saturated photosynthetic rate on Rubisco activity only in sunflower. Phosphate deficiency decreased the 3-phosphoglycerate and ribulose-1,5-bisphosphate (RuBP) contents of the leaf in both species. The ratio of 3-phosphoglycerate to RuBP decreased in sunflower but increased in maize with phosphate deficiency. The calculated concentrations of RuBP and RuBP-binding sites in the chloroplast stroma decreased markedly with phosphate deficiency. The ratio of the stromal concentration of RuBP to that of RuBP-binding sites decreased in sunflower but was not affected in maize with phosphate deficiency. We suggest that a decrease in this ratio made the RuBP-binding sites more vulnerable to blockage or inactivation by tight-binding metabolites/inhibitors, causing a decrease in the initial specific activity of Rubisco in the crude extract from phosphate-deficient sunflower leaves. However, the decrease in Rubisco specific activity was much less than the decrease in the RuBP content in the leaf and its concentration in the stroma. A large ratio of RuBP to RuBP-binding sites may have maintained the Rubisco-specific activity in phosphate-deficient maize leaves. We conclude that the effect of phosphate deficiency is more on RuBP regeneration than on Rubisco activity in both sunflower and maize.  相似文献   

19.
Pyruvate orthophosphate dikinase (PPDK) was found in various immature seeds of C3 plants (wheat, pea, green bean, plum, and castor bean), in some C3 leaves (tobacco, spinach, sunflower, and wheat), and in C4 (maize) kernels. The enzyme in the C3 plants cross-reacts with rabbit antiserum against maize PPDK. Based on protein blot analysis, the apparent subunit size of PPDK from wheat seeds and leaves and from sunflower leaves is about 94 kdaltons, the same as that of the enzyme from maize, but is slightly less (about 90 kdaltons) for the enzyme from spinach and tobacco leaves. The amount of this enzyme per mg of soluble protein in C3 seeds and leaves is much less than in C4 leaves. PPDK is present in kernels of the C4 plant, Zea mays in amounts comparable to those in C4 leaves.

Regulatory properties of the enzyme from C3 tissues (wheat) are similar to those of the enzyme from C4 leaves with respect to in vivo light activation and dark inactivation (in leaves) and in vivo cold lability (seeds and leaves).

Following incorporation of 14CO2 by illuminated wheat pericarp and adjoining tissue for a few seconds, the labeled metabolites were predominantly products resulting from carboxylation of phosphoenolpyruvate, with lesser labeling of compounds formed by carboxylation of ribulose 1,5-bisphosphate and operation of the reductive pentose phosphate cycle of photosynthesis. PPDK may be involved in mechanisms of amino acid interconversions during seed development.

  相似文献   

20.
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.Abbreviations CAM Crassulacean acid metabolism - G-6-P glucose-6-phosphate - PMSF phenylmethylsulfonyl fluoride - PEPC phosphoenolpyruvate carboxylase - PEPC-PK phosphoenolpyruvate ca carboxylase-protein kinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号