首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogeny of selected members of the phylum Rotifera is examined based on analyses under parsimony direct optimization and Bayesian inference of phylogeny. Species of the higher metazoan lineages Acanthocephala, Micrognathozoa, Cycliophora, and potential outgroups are included to test rotiferan monophyly. The data include 74 morphological characters combined with DNA sequence data from four molecular loci, including the nuclear 18S rRNA, 28S rRNA, histone H3, and the mitochondrial cytochrome c oxidase subunit I. The combined molecular and total evidence analyses support the inclusion of Acanthocephala as a rotiferan ingroup, but do not support the inclusion of Micrognathozoa and Cycliophora. Within Rotifera, the monophyletic Monogononta is sister group to a clade consisting of Acanthocephala, Seisonidea, and Bdelloidea-for which we propose the name Hemirotifera. We also formally propose the inclusion of Acanthocephala within Rotifera, but maintaining the name Rotifera for the new expanded phylum. Within Monogononta, Gnesiotrocha and Ploima are also supported by the data. The relationships within Ploima remain unstable to parameter variation or to the method of phylogeny reconstruction and poorly supported, and the analyses showed that monophyly was questionable for the families Dicranophoridae, Notommatidae, and Brachionidae, and for the genus Proales. Otherwise, monophyly was generally supported for the represented ploimid families and genera.  相似文献   

2.
Acanthocephala (thorny-headed worms) is a phylum of endoparasites of vertebrates and arthropods, included among the most phylogenetically basal tripoblastic pseudocoelomates. The phylum is divided into three classes: Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. These classes are distinguished by morphological characters such as location of lacunar canals, persistence of ligament sacs in females, number and type of cement glands in males, number and size of proboscis hooks, host taxonomy, and ecology. To understand better the phylogenetic relationships within Acanthocephala, and between Acanthocephala and Rotifera, we sequenced the nearly complete 18S rRNA genes of nine species from the three classes of Acanthocephala and four species of Rotifera from the classes Bdelloidea and Monogononta. Phylogenetic relationships were inferred by maximum-likelihood analyses of these new sequences and others previously determined. The analyses showed that Acanthocephala is the sister group to a clade including Eoacanthocephala and Palaeacanthocephala. Archiacanthocephala exhibited a slower rate of evolution at the nucleotide level, as evidenced by shorter branch lengths for the group. We found statistically significant support for the monophyly of Rotifera, represented in our analysis by species from the clade Eurotatoria, which includes the classes Bdelloidea and Monogononta. Eurotatoria also appears as the sister group to Acanthocephala. Received: 12 October 1999 / Accepted: 8 February 2000  相似文献   

3.
Molecular evidence for Acanthocephala as a subtaxon of Rotifera   总被引:7,自引:0,他引:7  
Rotifers are free-living animals usually smaller than 1 mm that possess a characteristic wheel organ. Acanthocephalans (thorny-headed worms) are larger endoparasitic animals that use vertebrates and arthropods to complete their life cycle. The taxa Acanthocephala and Rotifera are considered separate phyla, often within the taxon Aschelminthes. We have reexamined the relationship between Rotifera and Acanthocephala using 18S rRNA gene sequences. Our results conclusively show that Acanthocephala is the sister group of the rotifer class Bdelloidea. Rotifera was nonmonophyletic in all molecular analyses, which supports the hypothesis that the Acanthocephala represent a taxon within the phylum Rotifera and not a separate phylum. These results agree with a previous cladistic study of morphological characters. Correspondence to: J.R. Garey  相似文献   

4.
We investigated evolutionary relationships among orders in phylum Rotifera and among species in genus Notholca (Rotifera) by computing parsimonious cladograms. All of the most-parsimonious cladograms generated for the ordinal level confirm the view that class Monogononta, superclass Eurotatoria, and phylum Rotifera are monophyletic. Species within the genus Notholca were separated into six groups (clades), but some species have been defined based on highly variable characters not reliably studied using cladistics. Therefore, phenetic studies are warranted, especially for species possessing caudal processes.  相似文献   

5.
Recent progress in molecular techniques has generated a wealth of information for phylogenetic analysis. Among metazoans all but a single phylum have been incorporated into some sort of molecular analysis. However, the minute and rare species of the phylum Loricifera have remained elusive to molecular systematists. Here we report the first molecular sequence data (nearly complete 18S rRNA) for a member of the phylum Loricifera, Pliciloricus sp. from Korea. The new sequence data were analyzed together with 52 other ecdysozoan sequences, with all other phyla represented by three or more sequences. The data set was analyzed using parsimony as an optimality criterion under direct optimization as well as using a Bayesian approach. The parsimony analysis was also accompanied by a sensitivity analysis. The results of both analyses are largely congruent, finding monophyly of each ecdysozoan phylum, except for Priapulida, in which the coelomate Meiopriapulus is separate from a clade of pseudocoelomate priapulids. The data also suggest a relationship of the pseudocoelomate priapulids to kinorhynchs, and a relationship of nematodes to tardigrades. The Bayesian analysis placed the arthropods as the sister group to a clade that includes tardigrades and nematodes. However, these results were shown to be parameter dependent in the sensitivity analysis. The position of Loricifera was extremely unstable to parameter variation, and support for a relationship of loriciferans to any particular ecdysozoan phylum was not found in the data.  相似文献   

6.
The phylum Gastrotricha includes about 700 species. They are small worm‐like organisms abundant among marine and freshwater meiobenthos. In spite of their ubiquity, diversity and relative abundance, phylogenetic relationships of these animals remain enigmatic due to the conflicting results of morphological and molecular cladistic analyses. Also unclear are the alliances within the phylum. In order to best estimate the position of Gastrotricha among the Metazoa and to shed some light on the ingroup phylogenetic relationships, small subunit (SSU) ribosomal DNA (rDNA) from 15 species of Chaetonotida (eight genera) and 28 species of Macrodasyida (26 genera) were included in an alignment of 50 metazoan taxa representing 26 phyla. Of the gastrotrich SSU rDNA sequences, eight are new and, along with published sequences represent eight families, including the five marine most speciose. Gastrotricha were resolved within a monophyletic Lophotrochozoa as part of a clade including Micrognathozoa, Rotifera and Cycliophora. The Gnathostomulida were sister to this clade. Nodal support was low for all of these relationships except the grouping of the Micrognathozoa, Rotifera and Cycliophora. Bayesian inference resolved the Gastrotricha as monophyletic with weak nodal support; the Macrodasyida were resolved as paraphyletic with many basal nodes poorly supported. Within the Chaetonotida, the monotypic Multitubulatina Neodasys was found in alliance with the macrodasyidan Urodasys while all the Paucitubulatina were found to form a single, well‐supported clade, with Musellifer as the most basal member. Among the more densely sampled Macrodasyida the Lepidodasyidae and Macrodasyidae were each found to be polyphyletic while monophyly was well supported for the Turbanellidae and Thaumastodermatidae. The congruence of our results with those of the cladistic analysis based on morphological traits provides confidence about the value of each dataset, and calls for widening of the research to include additional taxa of particular phylogenetic significance such as the Dactylopodolidae, Diuronotus, Heteroxenotrichula and Draculiciteria. The study highlights the problems in working with small species, the need for voucher specimens and the confused taxonomic status and membership of various gastrotrich families.  相似文献   

7.
The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.  相似文献   

8.
In the present study, we determined the complete mitochondrial genome sequence of Oncicola luehei (14,281bp), the first archiacanthocephalan representative and the second complete sequence from the phylum Acanthocephala. The complete genome contains 36 genes including 12 protein coding genes, 22 transfer RNA (tRNA) genes and 2 ribosomal RNA genes (rrnL and rrnS) as reported for other syndermatan species. All genes are encoded on the same strand. The overall nucleotide composition of O. luehei mtDNA is 37.7% T, 29.6% G, 22.5% A, and 10.2% C. The overall A+T content (60.2%) is much lower, compared to other syndermatan species reported so far, due to the high frequency (18.3%) of valine encoded by GTN in its protein-coding genes. Results from phylogenetic analyses of amino acid sequences for 10 protein-coding genes from 41 representatives of major metazoan groups including O. luehei supported monophyly of the phylum Acanthocephala and of the clade Syndermata (Acanthocephala+Rotifera), and the paraphyly of the clade Eurotatoria (classes Bdelloidea+Monogononta from phylum Rotifera). Considering the position of the acanthocephalan species within Syndermata, it is inferred that obligatory parasitism characteristic of acanthocephalans was acquired after the common ancestor of acanthocephalans diverged from its sister group, Bdelloidea. Additional comparison of complete mtDNA sequences from unsampled acanthocephalan lineages, especially classes Polyacanthocephala and Eoacanthocephala, is required to test if mtDNA provides reliable information for the evolutionary relationships and pattern of life history diversification found in the syndermatan groups.  相似文献   

9.
Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene   总被引:2,自引:0,他引:2  
Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded.  相似文献   

10.
DNA sequencing has been used to construct two molecular phylogenies at the intrafamily and intrageneric level within the Rutaceae. Analysis oftrnL-trnF sequence data for five Rutaceae subfamilies has shown that there is no molecular support for the current subfamily classifications within the Rutaceae. The Dictyolomatoideae and Spathelioideae belong to a clade separate from the clades containing the remaining Rutaceae subfamilies. Rutoideae and Citroideae do not form discrete clades which suggests a reassessment of the subfamily classification is necessary, particularly asRuta falls within the majority Citroideae clade. Flindersioideae forms a clade within the Rutaceae and does not form a separate family or form a clade with Meliaceae.Sequencing of 17Flindersia species produces a similar phylogeny to that proposed by other authors using morphological methods with two exceptions. The molecular phylogeny indicatesF. amboinensis is associated withF. fournieri andF. laevicarpa and, in addition,F. oppositifolia andF. pimenteliana were found to be genetically identical.  相似文献   

11.
We report a molecular re-assessment of the classification of the nightjars which draws conclusions that are strongly at odds with the traditional, morphology-based classifications. We used maximum likelihood and Bayesian methods to compare the cytochrome b gene for 14 species from seven of the 15 genera of the Caprimulgidae and partial cytochrome b sequence data was available for a further seven species including three further genera. We found that within the Caprimulgidae there were four geographically isolated clades with bootstrap support greater than 70%. One of these clades contained just Chordeiles species, the remaining three clades each contained a mixture of genera including Caprimulgus sp. A clade of exclusively South American nightjars included the genera Caprimulgus, Uropsalis, Eleopthreptus and Hydropsalis. A clade of African and Eurasian birds included Caprimulgus and Macrodipteryx. Phalaenoptilus nuttallii and Caprimulgus vociferous formed a clade of North American birds. Two ecological factors appear to make morphological classification potentially misleading: first, the apparent retention of primitive anti-predator and foraging-related traits across genetically divergent groups; second, rapid divergence in other traits, especially those related to mating, which generate high levels of morphological divergence between species that are genetically very similar. The cytochrome b data suggests that the genus Caprimulgus is not monophyletic and is restricted to Africa and Eurasia and that Caprimulgus species from outside this area have been misclassified as a consequence of retention of primitive adaptations for crepuscular/nocturnal living. Some other genera also appear to have little support from the cytochrome b data.  相似文献   

12.
The taxonomic placement of four antarctic species of the marine red algal family Phyllophoraceae (Gigartinales) is assessed within a preliminary molecular phylogeny of the family based on direct sequence analysis of the chloroplast gene rbcL. Parsimony analysis of rbcL sequences indicates that Gymnogongrus antarcticus and Gymnogongrus turquetii cluster in a clade consisting predominantly of southern hemisphere species currently placed in Gymnogongrus and Ahnfeltiopsis, whereas Phyllophora ahnfeltioides and Phyllophora antarctica cluster in a separate clade that is widely divergent from the northern hemisphere Phyllophora clade. Results from molecular and morphological data challenge the current taxonomic concept that type of life history is a phylogenetically valid criterion for recognition of genera in the Phyllophoraceae.  相似文献   

13.
Phylogenetic relationships among Syndermata have been extensively debated, mainly because the sister-group of the Acanthocephala has not yet been clearly identified from analyses of morphological and molecular data. Here we conduct phylogenetic analyses on samples from the 4 classes of Acanthocephala (Archiacanthocephala, Eoacanthocephala, Polyacanthocephala, and Palaeacanthocephala) and the 3 Rotifera classes (Bdelloidea, Monogononta, and Seisonidea). We do so using small-subunit (SSU) and large-subunit (LSU) ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) sequences. These nuclear and mitochondrial DNA sequences were obtained for 27 acanthocephalans, 9 rotifers, and representatives of 6 phyla that were used as outgroups. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses were conducted on the nuclear rDNA(SSU+LSU) and the combined sequence dataset(SSU+LSU+cox 1 genes). Phylogenetic analyses of the combined rDNA and cox 1 data uniformly provided strong support for a clade including rotifers plus acanthocephalans (Syndermata). Strong support was also found for monophyly of Acanthocephala in analyses of the combined dataset or rDNA sequences alone. Within the Acanthocephala the monophyletic grouping of the representatives of each class was strongly supported. Our results depicted Archiacanthocephala as the sister-group to the remaining acanthocephalans. Analyses of the combined dataset recovered a sister-group relationship between Acanthocephala and Bdelloidea by parsimony, likelihood, and Bayesian methods. Support for this clade was generally strong. Alternative topologies that depicted a different rotifer sister-group of Acanthocephala (or monophyly of Rotifera) were significantly worse. In this paraphyletic assemblage of rotifers, the relative positions of Seisonidea and Monogononta to the clade Bdelloidea+Acanthocephala were inconsistent among trees based on different inference methods. These results indicate that Bdelloidea is the free-living sister-group to acanthocephalans, which should prove key for comparative investigations of the morphological, molecular, and ecological changes accompanying the evolution of parasitism.  相似文献   

14.
Abstract. Rotifera and Acanthocephala are generally regarded as separate phyla sharing a basal position among triploblast protostomes. This paper presents the first molecular phylogenetic examination of the relationship of Acanthocephala to all three rotifer classes, Seisonidea, Monogononta, and Bdelloidea. Inclusion of Acanthocephala within Rotifera, probably as a sister-taxon to a clade composed of Bdelloidea and Monogononta (the Eurotatoria), is strongly supported by both parsimony and distance methods, using a region of the nuclear coding gene hsp82. Previous molecular evidence for the inclusion of Acanthocephala in the Rotifera suggested that Acanthocephala is a sister-taxon of Bdelloidea, forming the clade Lemniscea. No support is found for this clade, and evidence is presented that the monogonont rotifer used in those analyses, Brachionus plicatilis , may be evolving in an anomalous manner.  相似文献   

15.
Skovgaard A  Daugbjerg N 《Protist》2008,159(3):401-413
Paradinium and Paradinium-like parasites were detected in various copepod hosts collected in the NW Mediterranean Sea, the North Atlantic Ocean, and the Godth?bsfjord (Greenland). The identity and systematic position of the parasitic, plasmodial protist Paradinium was investigated on the basis of SSU rDNA and morphology. SSU rDNA sequences were obtained from 3 specimens of Paradinium poucheti isolated from their cyclopoid copepod host, Oithona similis. In addition, a comparable sequence was obtained from a hitherto undescribed species of Paradinium from the harpactacoid copepod Euterpina acutifrons. Finally, SSU rDNA sequences were acquired from 2 specimens of a red plasmodial parasite (RP parasite) isolated from Clausocalanus sp. Both morphological and SSU rDNA sequence data supported that P. poucheti and Paradinium sp. are closely related organisms. In phylogenetic analyses based on SSU rDNA sequences, Paradinium spp. clustered with sequences from an uncultured eukaryote clone from the Pacific Ocean and two sequences from haplosporidian-like parasites of shrimps, Pandalus spp. This Paradinium clade branched as a sister group to a clade comprising the Haplosporidia and the Foraminifera. The RP parasite had a superficial morphological resemblance to Paradinium and has previously been interpreted as a member of this genus. However, several morphological characters contradict this and SSU rDNA sequence data disagree with the RP parasite and Paradinium being related. The phylogenetic analyses suggested that the RP parasite is a fast-evolved alveolate and a member of the so-called marine alveolate Group I (MAGI) and emerging data now suggest that this enigmatic group may, like the syndinian dinoflagellates, consist of heterotrophic parasites.  相似文献   

16.
ITS and ETS-based sequence analyses of 29 Neolitsea, six Actinodaphne and five outgroup `core' Laureae taxa show that Neolitsea is monophyletic with two large subclades, whereas most of the sampled Actinodaphne are paraphyletic below it. Inflorescence features appear to be among the more reliable morphological characters for explaining relationships between Neolitsea and other genera within the `core' Laureae, with the Neolitsea/Actinodaphne clade defined by inflorescences lacking vegetative terminal buds in the main axis. Although the relationships within Neolitsea are still poorly resolved, there is enough structure to suggest that the genus seems to divide into two groups based on fruit shape: elliptic or ovoid, versus globose, although more evidence (both molecular and morphological) and wider taxon sampling are required to confirm this.  相似文献   

17.
Hemocyanin is a copper-containing respiratory protein that is widespread within the arthropod phylum. Among the Crustacea, hemocyanins are apparently restricted to the Malacostraca. While well-studied in Decapoda, no hemocyanin sequence has been known from the ’lower’ Malacostraca. The hemocyanin of the amphipod Gammarus roeseli is a hexamer that consists of at least five distinct subunits. The complete cDNA sequence of one subunit and a tentative partial sequence of another subunit have been determined. The complete G. roeseli hemocyanin subunit comprises 2,150 bp, which translates in a protein of 672 amino acids with a molecular mass of 76.3 kDa. Phylogenetic analyses show that, in contrast to previous assumptions, the amphipod hemocyanins do not belong to the α-type of crustacean hemocyanin subunits. Rather, amphipod hemocyanins split from the clade leading to α and γ-subunits most likely at the time of separation of peracarid and eucarid Crustacea about 300 million years ago. Molecular clock analyses further suggest that the divergence of β-type subunits and other crustacean hemocyanins occurred around 315 million years ago (MYA) in the malacostracan stemline, while α- and γ-type subunits separated 258 MYA, and pseudohemocyanins and γ-subunits 210 million years ago.  相似文献   

18.
Hoya (Marsdenieae, Apocynaceae) includes at least 200 species distributed from India to the Pacific Islands. We here infer major species groups in the genus based on combined sequences from the chloroplast atpB-rbcL spacer, the trnL region, and nuclear ribosomal DNA ITS region for 42 taxa of Hoya and close relatives. To assess levels of ITS polymorphism, ITS sequences for a third of the accessions were obtained by cloning. Most ITS clones grouped by species, indicating that speciation in Hoya usually predates ITS duplication. One ITS sequence of H. carnosa, however, grouped with a sequence of the morphologically similar H. pubicalyx, pointing to recent hybridization or the persistence of paralogous copies through a speciation event. The topology resulting from the combined chloroplast and nuclear data recovers some morphology-based sections, such as Acanthostemma and Eriostemma, as well as a well-supported Australian/New Guinean clade. The combined data also suggest that morphological adaptations for ant-symbiosis evolved at least three times within Hoya.  相似文献   

19.
Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.  相似文献   

20.
Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号