首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1′-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.  相似文献   

2.
Aims: This study aimed to isolate and identify potential polycyclic aromatic hydrocarbon (PAH)‐degrading and/or metal‐tolerant fungi from PAH‐contaminated and metal‐contaminated soils. Methods and Results: Pyrene‐degrading fungi were isolated from contaminated soil and tested for metal (Cu, Zn and Pb) compound solubilization and metal accumulation. Three strains of Fusarium solani and one of Hypocrea lixii were able to degrade more than 60% of initial supplied pyrene (100 mg l?1) after 2 weeks. The isolates were grown on toxic metal (Cu, Pb and Zn)‐containing media: all isolates accumulated Cu in their mycelia to values ranging from c. 5·9 to 10·4 mmol per kg dry weight biomass. The isolates were also able to accumulate Zn (c. 3·7–7·2 mmol per kg dry weight biomass) from zinc phosphate‐amended media. None of the isolates accumulated Pb. Conclusions: These fungal isolates appear to show promise for use in bioremediation of pyrene or related xenobiotics and removal of copper and zinc from wastes contaminated singly or in combination with these substances. Significance and Impact of the Study: Microbial responses to mixed organic and inorganic pollution are seldom considered: this research highlights the abilities of certain fungal strains to interact with both xenobiotics and toxic metals and is relevant to other studies on natural attenuation and bioremediation of polluted sites.  相似文献   

3.
Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1'-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.  相似文献   

4.
In order to enhance phytoremediation efficiency, we investigated the effects of dual inoculation with ectomycorrhizal fungi and the ectomycorrhiza associated bacteria Micrococcus luteus and Sphingomonas sp. on the growth and metal accumulation of willows (Salix viminalis x caprea) on contaminated soil. The bacterial strains were previously collected from sporocarps of ectomycorrhizal fungi. The bacteria increased plant growth and the mycorrhizal dependency of willows colonized with the ectomycorrhizal fungus Hebeloma crustuliniforme. The total cadmium (Cd) and zinc (Zn) accumulation in the shoot biomass was increased after inoculation with the fungal strain Hebeloma crustuliniforme in combination with Micrococcus luteus up to 53% and in combination with Sphingomonas sp. up to 62%, respectively. The dual inoculation in combination with Laccaria laccata did not increase the accumulation of Cd and Zn in the willows. We conclude that associated bacteria can enhance the ectomyorrhiza formation and growth of willows and, thereby, the Cd and Zn accumulation in the plant biomass. The results suggest that bacterial support of root growth promoting ectomycorrhizal fungi may be a promising approach to improve the remediation of metal-contaminated soils by using willows.  相似文献   

5.
Atrazine is one of the most environmentally prevalent s-triazine-ring herbicides. The widespread use of atrazine and its toxicity necessitates search for remediation technology. As atrazine is still used in India as a major herbicide, exploration of atrazine-degrading bacterial community is of immense importance. Considering lack of reports on well characterized atrazine-degrading bacterial cultures from India and wide diversity and density of microorganisms in rhizosphere, soil sample from rhizosphere of atrazine-resistant plant was studied. Arthrobacter sp. strain isolated in this investigation utilizes atrazine as the sole nitrogen source. In addition, the bacterium degrades other triazines such as ametryn, cyanizine, propazine and simazine. PCR analysis confirms the presence of atzBCD and triazine hydrolase (trzN) genes on chromosomal DNA. Sequencing of the trzN gene reveals high sequence similarity with trzN from Nocardioides sp. C190. An inducible and intracellular atrazine chlorohydrolase enzyme was isolated and partially purified from this isolate. This study confirms the presence of atrazine-degrading microbial population in Indian soils and could be used efficiently for remediation of contaminated soils. Presence of trzN gene indicates possible presence of bacterial community with more efficient and novel enzymatic capabilities. Comparison of enzyme and gene structure of this isolate with other geographically distinct atrazine-degrading strains will help us in the better understanding of gene transfer and evolution.  相似文献   

6.
Soil samples from an agricultural field contaminated with 10 ppm14C-benz(a)anthracene in glass tubes were brought into contact with cultures of wood-rotting fungi, precultivated on wheat straw substrate. Forty-five strains of white-rot fungi and four brown-rot fungi were tested for their ability to colonize the soil and to mineralize14C-benz(a)anthracene to14CO2 within a 20-week incubation time. Twenty-two white-rot fungi and all brown-rot fungi were unable to colonize the soil. Twenty-three strains of white-rot fungi, all belonging to the genusPleurotus, colonized the soil. During the experiment the noncolonizing fungi and their substrate disintegrated more and more to a nonstructured pulp from which water diffused into the soil. The same phenomenon was observed in the control which contained only straw without fungus and contaminated soil. In samples with colonizing fungi the substrate as well as the mycelia in the soil remained visibly unchanged during the entire experiment. Surprisingly, most samples with fungi not colonizing the soil and the control without fungus liberated between 40 and 58 % of the applied radioactivity as14CO2 whereas the samples with the colonizing fungi respired only 15–25 % as14CO2. This was 3–5 times more14CO2 than that liberated from the control (4.9 %) which contained only contaminated soil without straw and fungus. A similar result was obtained with selected colonizing and noncolonizing fungi and soil contaminated with 10 ppm14C-pyrene. However, in pure culture studies in which14C-pyrene was added to the straw substrate,Pleurotus sp. (P2), as a representative of the colonizing fungi, mineralized 40.3 % of the added radioactivity to14CO2. The noncolonizing fungiDichomitus squalens andFlammulina velutipes liberated only 17.2 or 1.7 %, respectively, as14CO2. These results lead to the hypothesis that the native soil microflora stimulated by the formed products of straw lysis is responsible for high degradation rates found with noncolonizing fungi.  相似文献   

7.
Two-step degradation of pyrene by white-rot fungi and soil microorganisms   总被引:1,自引:0,他引:1  
  The effect of soil microorganisms on mineralization of 14C-labelled pyrene by white-rot fungi in solid-state fermentation was investigated. Two strains of white-rot fungi, Dichomitus squalens and a Pleurotus sp., were tested. The fungi were incubated on milled wheat straw contaminated with [14C]pyrene for 15 weeks. CO2 and 14CO2 liberated from the cultures were determined weekly. To study the effect of soil microorganisms on respiration and [14C]pyrene mineralization in different periods of fungal development, the fungal substrate was covered with soil at different times of incubation (after 0, 1, 3, 5, 7, 9 or 11 weeks). The two fungi showed contrasting ecological behaviour in competition with the soil microflora. Pleurotus sp. was highly resistant to microbial attack and had the ability to penetrate the soil. D. squalens was less competitive and did not colonize the soil. The resistance of the fungus was dependent on the duration of fungal preincubation. Mineralization of [14C]pyrene by mixed cultures of D. squalens and soil microorganisms was higher than by the fungus or the soil microflora alone when soil was added after 3 weeks of incubation or later. With Pleurotus sp., the mineralization of [14C]pyrene was enhanced by the soil microflora irrespective of the time of soil application. With D. squalens, which in pure culture mineralized less [14C]pyrene than did Pleurotus sp., the increase of [14C]pyrene mineralization caused by soil application was higher than with Pleurotus sp. Received: 8 March 1996 / Received revision: 1 July 1996 / Accepted: 8 July 1996  相似文献   

8.
The combined use of plants and bacteria is a promising approach for the remediation of polluted soil. In the current study, the potential of bacterial endophytes in partnership with Leptochloa fusca (L.) Kunth was evaluated for the remediation of uranium (U)- and lead (Pb)-contaminated soil. L. fusca was vegetated in contaminated soil and inoculated with three different endophytic bacterial strains, Pantoea stewartii ASI11, Enterobacter sp. HU38, and Microbacterium arborescens HU33, individually as well as in combination. The results showed that the L. fusca can grow in the contaminated soil. Bacterial inoculation improved plant growth and phytoremediation capacity: this manifested in the form of a 22–51% increase in root length, 25–62% increase in shoot height, 10–21% increase in chlorophyll content, and 17–59% more plant biomass in U- and Pb-contaminated soils as compared to plants without bacterial inoculation. Although L. fusca plants showed potential to accumulate U and Pb in their root and shoot on their own, bacterial consortia further enhanced metal uptake capacity by 53–88% for U and 58–97% for Pb. Our results indicate that the combination of L. fusca and endophytic bacterial consortia can effectively be used for the phytostabilization of both U- and Pb-contaminated soils.  相似文献   

9.
Pollution of soil with heavy metals, herbicides, antibiotics and other chemicals is known to have a negative effect on microbial activities. Therefore, the aim of this study was to isolate cultures of Azotobacter sp. from polluted and unpolluted soils and to study the effect of these pollutants on their growth. A total of 120 Azotobacter sp. were isolated from soils irrigated with wastewater (contaminated soils) and groundwater (uncontaminated soils). These isolates were screened for resistance to heavy metals, herbicide and antibiotics. Also, the soils from which the cultures were isolated were analyzed for the concentrations of Zn2+, Cd2+, Cu2+, Pb2+ and Mn2+ they contained. Contaminated soil showed high levels of heavy metals as compared to uncontaminated soil. The size of the Azotobacter population in contaminated soil was lower than that in uncontaminated soil. Of the Azotobacter isolates, 64 that were recovered from contaminated soil exhibited high resistance to heavy metals (Hg2+, Cd2+, Cu2+, Cr3+, Co2+, Ni2+, Zn2+ and Pb2+) and herbicide 2,4-D compared to 56 isolates from uncontaminated soil. Also, isolates from contaminated soil showed high resistance to chloramphenicol, nitrofurantoin and co-trimoxazole compared to those isolated from uncontaminated soil. The majority of Azotobacter isolates from contaminated soil showed multiple-resistance to different metal ions and antibiotics. All isolates failed to grow at pH less than 6. Salt concentration (5%) was found to be inhibitory to all isolates. The most potent isolates from contaminated soil that showed multiresistance to all substances tested were identified on the basis of morphological and biochemical characteristics, and 16S rRNA as A. chroococcum. These resistant isolates could be employed in contaminated soils and/or bioremediation.  相似文献   

10.
A survey was conducted in root-knot nematode-infested plastic houses to determine the diversity and frequency of occurrence of fungi associated with the nematode. The relationships between percentage fungal parasitism and physicochemical properties of soil were also investigated. Fifty-nine plastic houses were sampled in southeastern Spain, 42 treated with nematicides and 17 left untreated. Eleven fungal genera and unidentified fungi were isolated from nematode eggs or juveniles. Fungal parasitism occurred more frequently in untreated (82.4%) than treated (50%) soils. The species richness in untreated soils ranged from 0 to 5, the Shannon–Wiener diversity index (a measurement of how many different fungi there are in site taking into account how evenly they are distributed among the site) from 0 to 2.01, and the evenness index from 0.46 to 0.99. In treated soils, species richness ranged from 0 to 4, the Shannon–Wiener diversity index from 0 to 1.61, and the evenness index from 0.81 to 1. Of the sites with nematophagous fungi, Arthrobotrys dactyloides (34%), Cylindrocarpon sp., Neosartoria hiratsukae (17%), and Fusarium solani (14%) were the fungi most frequently found. Physicochemical properties of soil were similar in nematicide treated and untreated soils. Percent fungal parasitism in untreated soils correlated positively with lime, silt and carbonate content of soil.  相似文献   

11.
The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana are highly virulent control tools for insect pests and have been under evaluation for the control of globally important mosquito vectors such as Aedes aegypti. Here, we identified and isolated other virulent entomopathogenic fungi against Ae. aegypti. We collected 7 species of mosquitoes by human landing catch in 5 municipalities in Central and Northern Mexico and isolated 28 species of fungi. We harvested fungal conidia from six and assessed virulence against Ae. aegypti females. We observed variation in virulence of fungi in Ae. aegypti with the most virulent being Aspergillus tamarii, with a LT50 of 6.4 (±0.65) days and the least virulent was Trichoderma euskadiense with a LT50 of 16.3 (±1.5) days. Additional assays evaluated the impact of the fungi on Ae. aegypti fecundity and fertility and A. tamarii had the highest for both, resulting in 60% and 37% decrease, respectively. These results provide support for the potential utility of A. tamarii as an entomopathogenic control tool for the dengue vector, Ae. aegypti, pending further evaluations of environmental and nontarget safety.  相似文献   

12.
A study was undertaken to isolate some fungi exhibiting phosphate-dissolution ability, and to test whether these fungi are capable of increasing the amount of available P in a calcareous soil treated with rock phosphate (RP) or with triple superphosphate (TSP) and its subsequent uptake by sorghum (Sorghum bicolor L. Moench).Penicillium sp. and twoAspergillus foetidus (Naka) isolates significantly increased the availability of P in soil treated with RP or TSP during the growing season.Penicillium sp. isolate was more effective in increasing available P in the soil treated with RP or TSP than were Aspergillus isolates. However, the dry matter and P uptake responses to inoculation with these fungi were better in the soil treated with RP than in soil treated with TSP. In the TSP treated soil, the fungi achieved their maximum P releasing capacity two weeks earlier than in soil treated with RP. Positive and significant correlation coefficients among available P, P uptake and dry matter production at different periods of the growing season were observed following inoculation. However, none of these variables were found to be significantly correlated with the fungal populations.  相似文献   

13.
Abstract Four strains of white rot fungi, including two strains of Pleurotus sp., one Dichomitus squalens, and one Ganoderma applanatum, were grown on milled straw. After colonization of the straw by the fungi, sterile or nonsterile plugs of soil were added to the fungal substrates. The influence of the sterile soil and the indigenous soil microbiota on fungal growth, overall respiration, and production of ligninolytic exoenzymes was assessed. A method for extraction of laccase from soil samples was developed. Lignocellulose decomposition, and enzyme production of D. squalens were enhanced by the presence of sterile soil. The availability of inorganic compounds such as manganese may be a trigger for this stimulation. Neither growth nor the production of laccase and manganese peroxidase (MnP) of the Pleurotus strains was markedly affected by the soil microbiota. These fungi were highly competitive with the soil microbiota. It was demonstrated for the first time that the exoenzymes of such fungi are active in nonsterile soil. Enzyme activity in the aqueous phase of soil was high as in the aqueous phase of the straw substrate. D. squalens and G. applanatum did not withstand the competition with the soil microbiota, but the mycelia associated with straw were overgrown by soil microorganisms. Correspondingly, the fungi did not penetrate the soil, decomposition of lignocellulose was impeded, and the activities of laccase and MnP decreased dramatically. Received: 2 April 1996; Accepted: 7 June 1996  相似文献   

14.
Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties.  相似文献   

15.

Arbuscular mycorrhizal (AM) fungi can form symbiosis with 90% of the vascular plants and play important roles in ecosystem. To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions, roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland. The soil properties and AM fungal colonization were measured, and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target, subsequently, maize was selected as the host to verify its colonization. The results showed that the soil properties improved with the succession of saline-alkali grassland. The plants’ communities of the three stages could be colonized by AM fungi, and the colonization rate of Leymus chinensis (the third stage) ranged from 66.67% to 100%, Puccinellia tenuiflora (the second stage) ranged from 50% to 80%, while the Suaeda glauca (the first stage) was only 35%–60%. Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency, relative abundance, and importance value of 100%, 18.1%, and 59.1%, respectively. The colonization rate of Glomeraceae sp1 in maize ranged from 80% to 87% and similar mycorrhizal characteristics were detected in the roots of P. tenuiflora, S. glauca, and L. chinensis, indicating that Glomeraceae sp1 colonized the samples in the field. The correlation matrix indicated that colonization rate, colonization intensity, and vesicle abundance were closely related to soil conditions most, and they were related significantly to all the soil properties except cellulase activity. Besides, redundancy analysis (RDA) showed that soil properties drove the changes of AM fungal colonization and sporulation. These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions, and also for the exploration of AM fungi species with great functions.

  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds generated mainly by anthropogenic sources. They are considered toxic to mammals, since they have carcinogenic, mutagenic and genotoxic properties, among others. Although mycoremediation is an efficient, economical and eco-friendly technique for degrading PAHs, the fungal degradation potential of the phylum Ascomycota has not been widely studied. In this work, we evaluated different fungal strains from the polluted soil of ‘La Escondida’ lagoon in Reynosa, Mexico to know their potential to degrade phenanthrene (PHE). Forty-three soil isolates with the capacity to grow in the presence of PHE (0·1% w/v) were obtained. The fungi Aspergillus oryzae MF13 and Aspergillus flavipes QCS12 had the best potential to degrade PHE. Both fungi germinated and grew at PHE concentrations of up to 5000 mg l−1 and degraded 235 mg l−1 of PHE in 28 days, with and without an additional carbon source. These characteristics indicate that A. oryzae MF13 and A. flavipes QCS12 could be promising organisms for the remediation of sites contaminated with PAHs and detoxification of recalcitrant xenobiotics.  相似文献   

17.
Two bacterial species (isolates N and O) were isolated from a paddy soil microcosm that had been artificially contaminated with diesel oil to which extrinsic Pseudomonas aeruginosa strain WatG, had been added exogenously. One bacterial species (isolate J) was isolated from a similar soil microcosm that had been biostimulated with Luria–Bertani (LB) medium. Isolates N and O, which were tentatively identified as Stenotrophomonas sp. and Ochromonas sp., respectively, by sequencing of their 16 S rRNA genes had no ability to degrade diesel oil on their own in any liquid medium. When each strain was cocultivated with P. aeruginosa strain WatG in liquid mineral salts medium (MSM) containing 1% diesel oil, isolate N enhanced the degradation of diesel oil by P. aeruginosa strain WatG, but isolate O inhibited it. In contrast, isolate J, which was tentatively identified as a Rhodococcus sp., degraded diesel oil contained not only in liquid LB and MSM, but also in paddy soil microcosms supplemented with LB medium. The bioaugmentation capacity of isolate J in soil microcosms contaminated with diesel oil was much higher than that of P. aeruginosa strain WatG. The possibility of using isolate J for autochthonous bioaugmentation is discussed.  相似文献   

18.
Bacterial bioremediation is a widely used technique to remove or neutralize contaminants. However, the enzymatic capabilities of bacteria are limited and, consequently, recalcitrant compounds remain in the soil. Fungi can help to overcome this drawback, since their enzymatic repertoire is extensive. In this study, the diversity of viable, actively growing, filamentous fungi was explored in soils previously subjected to bioremediation with bacterial consortia from three petroleum exploitation fields. Diversity was estimated using both morphological traits and ITS rDNA sequencing. We recovered a highly diverse group of morphotypes from each field, most of them previously reported genera of fungi associated with bioremediation (Aspergillus, Paecilomyces, and Penicillium), but a high proportion (40%) of the fungal species detected have never previously been reported as being involved in degradation of hydrocarbons. To build evidence of the isolates as potential bioremediation agents, their laccase and peroxidase activities were measured in vitro; peroxidase activity was a common trend in these fungi. The detection of peroxidase activity suggests adaptation of these fungi to the residual contaminants after bacterial action. Bioaugmentation of the fungal isolates in microcosms contaminated with oily sludge resulted in higher removal of the asphaltenic fraction compared to no bioaugmented microcosms. Our method allowed us to screen for and isolate viable mycelia within a contaminated environment, a strategy efficient for our environmental protection goals.  相似文献   

19.
大量的稀土-重金属通过尾矿坝的浮尘、地表径流和渗滤液排放到周边土壤中,影响了土壤中的微生物群落结构。【目的】分析稀土和重金属复合污染土壤真菌群落结构并分离具有同时吸附稀土和重金属的菌株。【方法】本研究基于ITS基因,采用Illumina-Hiseq测序技术分析了包头稀土尾矿坝周边5份稀土-重金属污染土壤样品和距尾矿区20 km的1份相对未受污染的土壤样品的真菌群落特征,同时采用富集培养法从污染样品中筛选出金属耐性真菌,并对其进行吸附稀土-重金属的特性分析。【结果】群落结构为:在门水平,除了未分类门真菌(unclassified Fungi)外,子囊菌门(Ascomycota)真菌在所有土壤中占比较大(13.5%–90.5%);在纲水平上,除了未分类纲真菌外,粪壳菌纲(Sordariomycetes)真菌在B2 (73.1%)、B3 (28.4%)和B4 (20.8%)的丰度显著高于对照样点C (7.4%),而座囊菌纲(Dothideomycetes)在B5 (11.8%)的丰度明显高于B1 (3.5%);在属水平,除了未分类属,足孢子虫属(Podospora)是C(0.9%)和B3(23.6%)样点的优势种。曲霉属(Aspergillus)、未分类的格孢腔菌目(unclassified Pleosporales)和未分类的戴维迪科(unclassified Davidiellaceae)分别为B1 (3.0%)、B4 (10.5%)和B5(5.8%)的优势种,而蜡蚧属(Lecanicillium)真菌只在B2样点土壤存在且占优(51.6%)。Zn污染对真菌群落结构的影响大于稀土元素污染,且其浓度与优势的未分类真菌相对丰度呈负相关。从污染样品中共分离出6株真菌,它们分属于曲霉属(Aspergillus)(5株)和镰刀霉菌属(Fusarium)(1株)。所有分离菌株对镧(La~(3+))的吸附率均显著高于锌(Zn~(2+)),其中Aspergillus sp. B6-3对La~(3+)和锌Zn~(2+)的吸附率最高,分别为19.7%和3.9%。【结论】该研究为利用真菌去除稀土和重金属以优化生物吸附过程导向的环境生物修复和保护策略提供了机制基础。  相似文献   

20.
Although plants introduced for site restoration are pre‐selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post‐planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post‐planting than 16 months post‐planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post‐planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant–fungus specificity may be essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号